• No results found

Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic

N/A
N/A
Protected

Academic year: 2022

Share "Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatSciVerseScienceDirect

Precambrian Research

j o u r n al ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / p r e c a m r e s

Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic

evolution and paleogeographic reconstructions

Vimal R. Pradhan

a,∗

, Joseph G. Meert

a

, Manoj K. Pandit

b

, George Kamenov

a

, Md. Erfan Ali Mondal

c

aDepartmentofGeologicalSciences,UniversityofFlorida,241WilliamsonHall,Gainesville,FL32611,USA

bDepartmentofGeology,UniversityofRajasthan,Jaipur302004,Rajasthan,India

cDepartmentofGeology,AligarhMuslimUniversity,Aligarh202002,India

a r t i c l e i n f o

Articlehistory:

Received12July2011

Receivedinrevisedform6November2011 Accepted18November2011

Available online xxx

Keywords:

Bundelkhandcraton,Maficdykes,Central India,Paleomagnetism,Geochronology, Paleogeography

a b s t r a c t

Thepaleogeographic position ofIndia within thePaleoproterozoic Columbia andMesoproterozoic Rodiniasupercontinentsisshroudedinuncertaintyduetothepaucityofhighqualitypaleomagnetic datawithstrongagecontrol.NewpaleomagneticandgeochronologicaldatafromthePrecambrianmafic dykesintrudinggranitoidsandsupracrustalsoftheArcheanBundelkhandcraton(BC)innorthernPenin- sularIndiaissignificantinconstrainingthepositionofIndiaat2.0and1.1Ga.Thedykesareubiquitous withinthecratonandhavevariableorientations(NW–SE,NE–SW,ENE–WSWandE–W).Threedis- tinctepisodesofdykeintrusionareinferredfromthepaleomagneticanalysisofthesedykes.Theolder NW–SEtrendingdykesyieldameanpaleomagneticdirectionwithadeclination=155.3andanincli- nation=−7.8(=21;˛95=9.6).Theoverallpaleomagneticpolecalculatedfromthese12dykesfalls at58.5Nand312.5E(dp/dm=6.6/7.9).TheoverallmeandirectioncalculatedfromfourENE–WSW Mahobadykeshasadeclination=24.7andinclination=−37.9(=36;˛95=15.5).Thevirtualgeomag- neticpole(VGP)forthesefourdykesfallsat38.7Sand49.5E(dp/dm=9.5/16.3).Athird,anddistinctly steeper,paleomagneticdirectionwasobtainedfromtwooftheNE–SWtrendingdykeswithadeclina- tion=189.3andinclination=64.5.U–PbgeochronologygeneratedinthisstudyyieldsaU–PbConcordia ageof1979±8MafortheNW–SEtrendingdykesandamean207Pb/206Pbageof1113±7Maforthe MahobasuiteofENE–WSWtrendingdykes,confirmingatleasttwodykeemplacementeventswithin theBC.WepresentglobalpaleogeographicmapsforIndiaat1.1and2.0Gausingthesepaleomagnetic poles.Thesenewpaleomagneticresultsfromthe∼2.0GaNW–SEtrendingBundelkhanddykesandthe paleomagneticdatafromtheBastar/CuddapahsuggestthattheNorthandSouthIndianblocksofthe PeninsularIndiawereincloseproximitybyatleast2.5Ga.

ThepaleomagneticandgeochronologicaldatafromtheMahobadykeissignificantinthatithelpscon- straintheageoftheUpperVindhyanstrata.ThepolecoincidesintimeandspacewiththeMajhgawan kimberlite(1073Ma)andtheBhander–RewapolesfromtheUpperVindhyanstrata.Themostparsimo- niousexplanationforthiscoincidenceisthattheageoftheUpperVindhyansedimentarysequenceis

>1000Ma.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

TheIndiansubcontinentholdsakey positionwhenattempt- ing to unravel the intricacies of Precambrian paleogeography, suchas the PaleoproterozoicColumbia supercontinent (Rogers, 1996; Rogers and Santosh, 2002; Meert, 2002; Santosh et al., 2003; Zhao et al., 2004a,b), the Meso-Neoproterozoic Rodinia supercontinent(McMenaminandMcMenamin,1990;Meertand Torsvik,2003;Meertand Powell,2001; Lietal.,2008),andthe

Correspondingauthor.Fax:+13523929294.

E-mailaddress:vimalroy@ufl.edu(V.R.Pradhan).

Ediacaran–Cambrian Gondwana supercontinent (Meert, 2003;

MeertandVanderVoo,1996;BurkeandDewey,1972;Pisarevsky etal.,2008).Indiaofferstargetrocksthatarebothaccessibleand ofappropriateageforconductingpaleomagneticandgeochrono- logicalinvestigations(Meert,2003;PowellandPisarevsky,2002;

MeertandPowell,2001;Pesonenetal.,2003).Thesetargetrocks includePrecambrianmaficdykesanddykeswarmsthatintrude theArchean–Paleoproterozoiccratonicnuclei,aswellasvolcanic andsedimentarysuccessionsexposedintheDharwarandAravalli protocontinentsoftheIndianpeninsularshield(Fig.1).

Thecorrelationofmaficdykeswarmsintermsoftheirdistri- bution,isotopicage,geochemistryandpaleomagnetismiscritical inordertofullyevaluatePrecambrianplatereconstructionsand 0301-9268/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.precamres.2011.11.011

(2)

Fig.1.GeneralizedgeologicalandtectonicmapoftheIndiansub-continentwiththePrecambrianmaficdykeswarmscross-cuttingvariousArcheancratonicblocks.C:

Cuddapahbasin;Ch:ChattisgarthBasin;CIS:CentralIndianShearZone;GR:GodavariRift;M:MadrasBlock;Mk:Malanjkhand;MR:MahanadiRift;N:NilgiriBlock;NS:

Narmada–SonFaultZone;PC:Palghat–CauveryShearZone;R:RengaliProvinceandKerajangShearZone;S:SinghbhumShearZone;V:VindhyanBasin.

Source:(modifiedafterFrenchetal.,2008).

possibleconfigurationofsupercontinents(Halls,1987;VanderVoo andMeert,1991;HallsandZhang,1995;Mertanenetal.,1996;Park etal.,1995;BleekerandErnst,2006;ErnstandSrivastava,2008;

Piispaetal.,2011).TheIndianpeninsularshield istraversedby numerousPrecambrianmaficdykeswarms(Drury,1984;Murthy etal.,1987;Murthy,1995;Ramchandraetal.,1995;Frenchetal., 2008;FrenchandHeaman,2010;Meertetal.,2010;Pati,1999;

Patietal.,2008;Pradhanetal.,2008;Ernstetal.,2008;Srivastava andGautam,2008;Srivastavaetal.,2008).Thesedykes intrude thegranite-greenstoneterranesofthemajorIndiancratonicnuclei,

namelyDharwarinthesouth,Bastarintheeastcentral,Singhbhum intheeastandtheAravalliandBundelkhandinthenorth–west andthenorth(Halls,1982;Fig.1).Thedykesarethefocusofcon- siderablescientificattentionaimedatdefiningtheirgeochemical andgeophysicalcharacteristics,geochronology,paleomagnetism andtectoniccontrolsontheiremplacement(Devarajuetal.,1995, RadhakrishnaandPiper,1999;Srivastavaetal.,2008;Hallsetal., 2007; French et al., 2008; French and Heaman, 2010; Pradhan etal.,2008,2010;Pati,1999;Patietal.,2008;Piispaetal.,2011;

Ratre et al., 2010; Ernst et al., 2008; Ernst and Bleeker, 2010;

(3)

Meertet al.,2011).Paleomagneticandgeochronologicalstudies onthesePrecambrianmaficdykeswarmsaswellasthevolcanic andsedimentarysuccessionsoftheGwalior,CuddapahandVind- hyanbasins,provideinsightintoIndia’schangingpaleogeographic positionduringthecriticalPaleo-toMesoproterozoicintervaland may,insomecircumstances,allowforfurtherageconstraintstobe placedonthepoorlydatedsedimentarybasinsofIndia(Pradhan etal.,2008,2010;Gregoryetal.,2006;Maloneetal.,2008;Meert etal.,2010,2011;Frenchetal.,2008;French,2007;Hallsetal., 2007;Ratreetal.,2010;FrenchandHeaman,2010;Piispaetal., 2011).

This study focuses on the Precambrian mafic dyke swarms intruding the Bundelkhand craton in north-central India (Pati, 1999). The most prominent of the Paleo–Mesoproterozoic (2.5–1.0Ga)magmaticeventsarerepresentedbythreemaficdyke swarmsthatintrudetheArcheangranitic-gneissicbasementofthe Bundelkhandcraton.Thedykesfollowtwomajortrends,suggest- ingatleasttwomajorpulsesofmagmaticemplacementwithinthe craton.Basedonfieldcross-cuttingrelationships,theENE–WSW trendingdykesaretheyoungestinthecraton,andarerepresented bythe“GreatDykeofMahoba”(Fig.3candd).Previouspaleomag- neticstudiesonthesedykeswerehinderedbypoorageconstraints (Poitouetal.,2008).Existingisotopicagesallowanagebracket between2150and1500Mafortheoldersuiteofmaficdykes(Rao, 2004;Raoetal.,2005;Basu,1986;Sarkaretal.,1997;Sharmaand Rahman,1996).

Wereportnewpaleomagneticandgeochronologicaldataonthe BundelkhandmaficdykesfromtheMahoba,Banda,Khajuraoand nearbyareasoftheBundelkhandprovinceinthecentralIndia(Fig.

2).Thisstudyoffersthefirstrobustageconstraintsonthepaleo- magneticpolescalculatedfromthesemaficdykes.Thesedatawill ultimatelyaidinimprovingourmodelsforthePrecambriantec- tonicevolutionoftheIndiancratons,clarifytheroleofIndiain theColumbiaandRodiniasupercontinents,andgeneratedatafor developinganapparentpolarwanderpath(APWP)forIndiainthis poorlyresolvedperiodofEarthhistory.

2. Geologicalsettingandpreviouswork

The Archaean–early Proterozoic Bundelkhand craton (BC), commonlyknownasBundelkhandGraniteMassif(BGM)isasemi- circulartotriangularprovincethatformsthenorthernmostpartof theIndianpeninsula(Fig.2).Itcoversanareaof∼29,000km2and liesbetweenlatitudes2430and2600Nandlongitudes7730 Eand8100E(Sharma,1998).TheBCisdelimitedtothewestby theGreatBoundaryFault,tothenortheastbytheIndo-Gangetic alluvialplainsandtothesouthandsoutheastbytheNarmada–Son lineament(Fig.2).Thesouthwesternmarginismarkedbyrelatively small outcrops of Deccan Basalt; additionally, Paleoproterozoic rocksoftheBijawarandGwaliorGroupsareexposedintheSW andNEpartsoftheBC.ThearcuateVindhyanbasinoverliesthe BCinthesouthandsoutheasternsections(Goodwin,1991;Naqvi andRogers,1987;Patietal.,2008;Meertetal.,2010).Sharmaand Rahman(2000)dividetheBundelkhandcratonintothreelitho- tectonicunits:(a)the∼3.5Gahighlydeformedgranite-greenstone basement; (b) ∼2.5 old multiphasegranitoid plutons andasso- ciatedquartz reefs; and (c) themaficdykes and dykeswarms.

TheBGMrepresentsasignificantphaseoffelsicmagmatismasso- ciatedwith a complex of pre-granitesedimentary rocks (Basu, 1986).Thebasementisrepresentedbyahighlydeformedgranite- greenstoneterranethat consistsof variousenclavesof Archean gneisses,amphibolites,ultramafics,BIF’s,tonalite–trondhjhemite- gneiss,marble,calc–silicaterocks, fuchsitequartzitesandother metasediments(Royetal.,1988;Basu,1986;Sharma,1998;Sinha Royetal.,1998;MondalandZainuddin,1996;Mondaletal.,2002).

Three differentphases of granitoid emplacement are identified intheBGM.Inorder ofdecreasing207Pb/206Pbage,thesegran- itesinclude2521±7Mahornblendegranite,2515±5Mabiotite granite,and2492±10leucogranitesandconstitute80–90%ofits exposed area(Gopalanet al., 1990;Wiedenbeck and Goswami, 1994;Wiedenbecketal.,1996;Mondaletal.,1997,1998,2002;

Malviyaetal.,2004,2006).GranitoidemplacementintheBCwas followedbyanumberofminorintrusionsincludingwidespread pegmatitic veins, porphyry dykes and dykeswarms, and felsic units(rhyolites,dykesofrhyoliticbrecciaswithangularenclaves ofporphyries).Numerousquartzveinsofvariedsizewithmainly NNE–SSWandNE–SWtrendsareobservedinpartsoftheBCrepre- sentingepisodictectonicallycontrolledhydrothermalactivity(Pati etal.,1997,2007).

TheyoungestphaseofmagmatismintheBGMisrepresentedby maficdykesanddykeswarmsthattraversealltheabovelitholo- gies.Morethan700maficdykesareknowntointrudethegranitoid rocksoftheBC(Patietal.,2008).Themajorityofthesedykestrend ina NW–SEdirection,withsubordinateENE–WSWand NE–SW trending dykesincludingtheENE–WSW Great dykeofMahoba (Basu,1986;MondalandZainuddin,1996;Mondaletal.,2002;Fig.

2).Thesemaficdykesaresubalkalinetotholeiiticincomposition anddisplaycontinentalaffinity(Patietal.,2008).Thedykesare commonlyexposedasaseriesofdiscontinuousandboulderyout- cropsextendinginlengthfromfewtensofmeterstomorethan 17km. The‘Great Dyke’of Mahobahasmaximumstrike length of≥50km(Figs.2 and3c andd).Thedykes aregenerallynon- foliated, relativelyunaltered and exhibit sharp chilled contacts withthehost granitoids(Fig.3b).Basu (1986)distinguishedat leastthreegenerationsofdykesbasedontheircross-cuttingrela- tionships.Theoldest,coarsegrainedNW–SEtrendingsuiteiscut byENE–WSWandNE–SWtrending medium-graineddykesthat includesmallbodiesandlenticlesofanaphaniticdolerite.Numer- ousintermediatetofelsicdykesareexposedinthewest-central partofthemassifbetweenJhansiand Jamalpur,includingdior- iteporphyry,syeniteporphyryandfine-grainedsyeniteporphyry (Basu,1986).

Theagesfor theArchaeanrocksintheBGMare poorlycon- straineddue tolimited isotopicstudies.Theoldestrocksin the massif are associated with the TTG magmatism intruding the basementrocksandareassignedanageof3503±99Ma(Rb–Sr isochron;Sarkaretal.,1996).Zirconsfromthebasementgneiss yieldanionmicroprobe207Pb/206Pbageof3270±3Ma(Mondal etal.,2002).TheBastar,DharwarandAravallicratons(Sarkaretal., 1993;Wiedenbeck etal.,1996)in peninsularIndiaalsocontain coevalArcheanbasementrockssuggestingthattheseprotoconti- nentsplayedanimportantroleintheearlieststagesofnucleation oftheIndianshield.Theoverallstabilizationageforthemassifhas beeninterpretedtobe∼2.5Gabasedonthe207Pb/206Pbagesof thegranitoids(Meertetal.,2010;Crawford,1975;Mondaletal., 1997,1998,2002;RoyandKröner,1996).Thelargescalegranitic magmatismintheBCoverlapswithsimilareventsofgranitemag- matismandmineralizationinadjacentBastar(2490±10Ma;Stein etal.,2004)andDharwarcratons(2510Ma;Jayanandaetal.,2000) indicatingwidespreadgraniticplutonismthroughoutmuchofthe IndianshieldattheArchean–Proterozoicboundary.Agecontrolon theBundelkhandmaficdykesisproblematic andislooselycon- strainedtobetweenca.2.1and1.5Ga(Crawford,1975;Crawford and Compston, 1970; Sarkar et al., 1997). More recent in situ

40Ar/39Arlaserablationdatayielded2150and2000Maagesfor maficdykes(Rao,2004;Raoetal.,2005)indicatingtwopulsesof dykeemplacement,however,nodetailsonthelocationsofthesam- pleswereprovidedinthosepublications.Themajorityofthelaser spotsfortheinsitu40Ar–39Aranalysiswereinthe2000Marange, suggestingthatsomeoftheolderspotagesmaysufferfromexcess argonwithinthesamples.

(4)

Fig.2. SketchmapofthemajorunitsintheBundelkhandcraton,NWIndia(modifiedafterMalviyaetal.,2006).Theasterisksonthemapshowthesitessampledforboth paleomagneticandgeochronologicalanalysis(NW–SEtrendingdykeI9GS13andENE–WSWtrendingGreatDykeofMahoba).

(5)

Fig.3. (a)NW–SEtrendingdyke(I925)exposedinanoutcrop∼50kmawayfromMauranipur,M.P.(b)GranitichostrockatthesamesiteI925trellisedbynumerousmafic dykelets.(candd)ENE–WSWtrendingdykeI923exposedinaquarryinMahobadistrict,MadhyaPradesh,CentralIndia.

(6)

3. Samplingandmethodology

3.1. Paleomagneticmethods

We sampled 27 sites (dykes) and collected a total of ∼380 coresamples fromthe maficdykes intruding theBundelkhand cratonfor paleomagneticanalysis(Fig.2).Outofthese,only 18 sites(dykes)yieldedconsistentresultsandarediscussedinthis paper(Table1).Allsamplesweredrilledinthefieldusingawater cooledportabledrill.Thesampleswereorientedusingbothsunand magneticcompassandreadingswerecorrectedforlocalmagnetic declinationanderrors.SampleswerereturnedtotheUniversityof Floridawheretheywerecutintostandardsizedcylindricalspec- imens.These specimens were stepwisedemagnetized by using boththermalandalternatingfield(AF)methodsinordertoiden- tifythebesttreatmentforisolatingvectorcomponentswithinthe samples.Alternatingfielddemagnetizationwasconductedusinga home-builtAFdemagnetizerandwithfieldsupto100mT.Ther- maldemagnetizationwasconducteduptotemperaturesof600C withanASC-ScientificTD-48thermaldemagnetizer.Basedupon themagneticstrengthofthesamplesandinstrumentsensitivity themeasurementsweremadeoneitheraMolspin®spinnermag- netometerora2G77RCryogenicmagnetometerattheUniversity ofFlorida.InsamplesthatshowedaveryhighinitialNRM,sam- plesweretreatedinliquidNitrogenbathspriortothermalorAF treatmenttoremoveanyviscousmulti-domainmagnetism.Lin- earsegmentsofthedemagnetizationtrajectorieswereanalyzed viaprincipalcomponentanalysisusingtheIAPDsoftware(Torsvik etal.,2000).

3.1.1. Rockmagnetictests

Curie temperature experiments were run on representative samplefragmentsfromeachsiteonaKLY-3SsusceptibilityBridge withaCS-3heatingunit.Isothermalremanenceacquisition(IRM) studieswereperformedonsamplesusinganASC-IM30impulse magnetizertofurthercharacterizethemagneticbehavior.

3.2. Geochronologicalmethods

TwosamplesfromtheNE–SWtrending“GreatDykeofMahoba”

and five samples from the NW–SE trending older suite of mafic dykes from the Bundelkhand craton were processed for geochronology(Fig.2).Toascertainthepresenceofuraniumbear- ingphases,selectedsampleswerethinsectionedandthenimaged via scanning electron microscopy (SEM) for zircon/baddeleyite usingthebackscattereddiffraction(BSD)method.Outofthedozen samplesimaged,onlytwofromtheNE–SWtrendingyoungersuite (GDMandGDM-1)andfour(includinganalyzedsampleI9GS-13) fromtheNW–SEtrendingoldersuitedisplayedbrightspotsrep- resentativeofzirconorbaddeleyite,ranginginsizebetween2and 100␮m(Fig.4aandb).WepulverizedsampleI9GS13fromthe oldersuiteandMahobadykesamples(GDMandGDM-1)forcon- ventionalmethodsofmineralextraction.Using standardgravity andmagneticseparationtechniques,thezircongrainswerecon- centratedfrompulverizedsamplesatUniversity ofFlorida.The sampleswerecrushed,thendiskmilledandsievedto<80-mesh grainsizefraction.ThefractionswerethenrinsedusingCalgon(an anionicsurfactant),followedbywatertabletreatmentwithslow samplefeedrates.Thiswasfollowedbyheavyliquidmineralsep- arationwithmultipleagitationperiodstoreducethenumberof entrappedgrainsinthelowerdensityfraction.Finally,thesamples wererepeatedlypassedthroughaFrantzIsodynamicmagneticsep- aratoruptoacurrentof1.0 ˚A(2–4tilt).Approximately15–20clear, euhedraltonearlyanhedralzircongrainsand zirconfragments werehandpickedfromthetwo samplesoftheNE–SWtrending youngerMahobasuite(GDMandGDM-1) and25–35subhedral

toeuhedralzircongrainsfromtheNW–SE trendingoldersuite (I9GS13)underanopticalmicroscopetoensuretheselectionof onlytheclearest grains and fragmentsof grains.Furtherhand- pickingofthegrainsreducedthenumbertoonly7–8goodgrains fromtheMahobadoleritesand10–15grainsfromtheI9GS-13dyke sample.Thegrainswerethenmountedinresinandthenpolished toexposemedialsections.Furthersonicationandcleaningofthe plugsin5%nitricacid(HNO3)helpedtoremoveanycommon-Pb surfacecontamination.

U/PbisotopicanalyseswereconductedattheDepartmentof GeologicalSciences(UniversityofFlorida)onaNuPlasmamulti- collectorplasmasourcemassspectrometerequippedwiththree ion counters and 12 Faraday detectors. The LA–ICPMC–MS is equippedwithaspeciallydesignedcollectorblockforsimultane- ousacquisitionof204Pb (204Hg),206Pband207Pb signalsonthe ion-countingdetectorsand235Uand238UontheFaradaydetectors (Muelleretal.,2008).Mountedzircongrainswerelaserablated usinga New-Wave 213nmultraviolet laser beam.During U/Pb analyses,thesamplewasdecrepitatedin aHestreamandthen mixedwithAr-gasforinductionintothemassspectrometer.Back- groundmeasurementswere performedbeforeeach analysisfor blankcorrectionandcontributionsfrom204Hg.Eachsamplewas ablatedfor∼30sinanefforttominimizepitdepthandfraction- ation.Datacalibrationanddriftcorrectionswereconductedusing theFC-1DuluthGabbrozirconstandard,longtermreproducibil- itywere2%for206Pb/238U(2)and1%for207Pb/206Pb(2)ages (Muelleretal.,2008).Therewasnosignificant204Pbdetectedin thesamplesandtherefore,nocommonPbcorrectionwasappliedto theU–Pbdata.Datareductionandcorrectionwereconductedusing acombination ofin-housesoftware andIsoplot(Ludwig,1999).

AdditionaldetailscanbefoundinMuelleretal.(2008).

4. Results

4.1. Geochronologicalresults

TheU/Pb agesfromthezircon/zirconfragmentsweredeter- minedfor theolderNW–SEtrending dykesampleI9GS13 and theGreat dyke of Mahobasamples GDM and GDM1. The dyke sampleI9GS13yieldedanumberofwellfacetedzirconsandzir- con fragments suitable for U/Pb isotopic analysis. Eleven laser analyseson five differenteuhedral zircons yielded a concordia ageof1979±8Ma(2;MSWD(Conc.+Equival.)=0.63;probabil- ity(Conc.+Equival.)=0.90;Fig.5a;Table2a).Thisageisinrough agreementwithreportedinsitu40Ar/39Arlaserablationdatacited above(Rao,2004;Raoetal.,2005).Inaddition,nocrustalagesof 2.0GaareknownfromtheBundelkhandcratonandnodetritalcom- ponentofthisagehasbeenidentifiedintheadjacentVindhyanand Marwarbasins(Maloneetal.,2008;Meertetal.,2010).Therefore, itisourinterpretationthatthe1978Maagereflectsthecrystalliza- tionageofthedyke.Tenanalysesonfourotherfragmentaryzircons fromsampleI9GS13yieldedmoderatelydiscordant207Pb/206Pb datesbetween2777and2686Ma(Fig.5b;Table2a).Theseresults arebroadlyconsistentwiththeagesofthebasementrocksinthe region(Mondaletal.,2002).Threeanalysesofasinglezirconare slightly tomoderatelydiscordant,and the twoleast-discordant analysesagreetowithinuncertaintyandyieldaweightedmean

207Pb/206Pbdateof3254±3Ma(MSWD=0.88)thatisalsoacom- monageforbasementrocksintheBundelkhandcraton(seeMeert etal.,2010).

ThetwoMahobadykesamplesyieldedonlytwowellfaceted grainsandseveralfragments/tipsofzircons(Fig.4a).Theregression derivedfrom207Pb/206Pbratiosfromfivelaseranalysesonthree differentzircongrainsandzirconfragments/tipsyieldedamin- imumconcordantageof1096±19Ma(2;MSWD=0.3;Fig.5c;

(7)

Table1

Bundelkhandpaleomagneticresults.

Site/study Latitude/longitude N/n Dec Inc Kappa() ˛95 VGPlatitude VGPlongitude dp/dm

OlderSuite(NW–SE)

SiteI442 25.383N,78.536E 5 141.0 −09 11.3 7.2 47.2N 325.7E 3.7/7.3

SiteI443a

DykeA 25.425N,78.672E 2 139.0 −12.6 70.0 11.1 46.5N 329.8E 5.8/11.3

DykeB 25.425N,78.672E 4 141.4 5.8 70.0 11.1 43.2S 137.1E 5.6/11.1

DykeCb 25.425N,78.672E 2 339.0 −21 70.0 11.1 48.5S 110.5E 6.1/11.7

SiteI444 25.408N,78.669E 7 174.0 −14.8 16.0 15.5 71.4N 277.3E 8.1/15.9

SiteI454 25.147N,80.050E 7 156.5 −17.3 50.0 8.6 62.4N 318.2E 4.6/8.9

SiteI455 24.935N,79.902E 18 149.0 −21 47.3 5.1 57.6N 330.6E 2.8/5.5

SiteI925 24.946N,79.911E 34 151.3 −19.5 34.0 4.3 59.1N 326.5E 2.3/4.5

SiteI927 25.017N,80.475E 27 167.5 −15.9 42.0 4.3 69.3N 297.6E 2.3/4.4

SiteI929 25.192N,80.464E 9 168.2 −10.3 107 5.0 67.1N 291.8E 2.6/5.1

SiteI930 25.189N,80.469E 16 164.0 −13.2 71.3 4.4 66.1N 302.7E 2.3/4.5

SiteI931 25.286N,79.919E 10 152.9 −8.8 46.2 7.2 56.8N 315.3E 3.7/7.3

Mahobadykes(ENE–WSW)

SiteI451 25.284N,79.851E 23 14.6 −31.7 25.0 6.1 45.3S 59.5E 3.8/6.9

SiteI452 25.284N,79.851E 13 27.6 −48.7 232.0 2.7 29.1S 52.1E 2.3/3.6

SiteI923 25.184N,79.401E 20 14.2 −37.0 125.0 3.3 42.2S 61.2E 2.3/3.9

SiteI924(greatcircles) 25.301N,79.934E 10 40.7 −29.2 2.8 33.1S 31.0E 1.7/3.1 NE–SW(thirddykesuite)

SiteI448 25.134N,79.750E 20 200.0 60.0 42.4 14.3 21.5S 63.3E 16.3/21.6

SiteI928 25.052N,80.486E 20 175.0 68.0 48.6 4.7 13.8S 83.5E 6.6/7.9

Overallmean–older(NW–SE) 25.00N,80E 141/12 155.3 −7.8 21.4 9.6 58.5N 312.5E 4.9/9.7 Overallmean–Mahoba(ENE–WSW) 25.17N,79.5E 76/4 24.7 −37.9 35.9 15.5 38.7S 49.5E 9.5/16.3 N:numberofsamplesused;n:numberofdykes/sites;Dec:declination;Inc:inclination;:kappaprecisionparameter;˛95:coneof95%confidenceaboutthemeandirection;

VGP:virtualgeomagneticpole.

aDykeA,BandCare3smalldykesfromSiteI443withDykeC.

bShowingreversepolarity.

Table2a

GeochronologicalResultsfromtheBundelkhandoldersuiteofdykes(I9GS13).

Ratios Ages

Grain 207Pb/206Pb ±2␴ 206Pb/238U ±2␴ 207Pb/235U ±2␴ 206Pb/238U (Ma)

±2␴ 207Pb/235U (Ma)

±2␴ 207Pb/206Pb (Ma)

±2␴ %Disc RHO

I9GS132 0.1222 0.0012 0.34907 0.0179 5.88 0.30 1930 43 1959 22 1989 8 3 0.98

I9GS 136 0.1230 0.0016 0.35774 0.0239 6.07 0.42 1971 57 1985 30 2000 12 1 0.98

I9GS137 0.1218 0.0026 0.36297 0.0223 6.10 0.40 1996 53 1990 28 1983 19 −1 0.95

I9GS138 0.1210 0.0014 0.36787 0.0208 6.14 0.36 2019 49 1995 25 1970 10 −3 0.98

I9GS 13 9 0.1212 0.0012 0.37220 0.0221 6.22 0.38 2040 52 2007 26 1975 9 −3 0.98

I9GS1310 0.1220 0.0016 0.36876 0.0188 6.20 0.32 2023 44 2004 23 1985 11 −2 0.97

I9GS 1311 0.1215 0.0012 0.35601 0.0164 5.96 0.28 1963 39 1970 20 1978 9 1 0.98

I9GS1314 0.1218 0.0012 0.35741 0.0198 6.00 0.34 1970 47 1976 24 1983 9 1 0.98

I9GS1315 0.1214 0.0012 0.35357 0.0157 5.92 0.26 1952 37 1964 20 1977 9 1 0.98

I9GS1316 0.1211 0.0014 0.35077 0.0178 5.86 0.28 1938 39 1955 21 1972 10 2 0.97

I9GS1317 0.1213 0.0012 0.35355 0.0163 5.91 0.30 1951 42 1963 22 1975 9 1 0.98

I9GS1321 0.1883 0.0008 0.45398 0.0221 11.79 0.58 2413 98 2588 45 2728 7 12 0.99

I9GS1323 0.1928 0.0007 0.47373 0.0190 12.59 0.51 2500 83 2649 38 2766 6 10 0.99

I9GS1324 0.1939 0.0008 0.46927 0.0187 12.55 0.50 2480 82 2646 37 2776 6 11 0.99

I9GS1326 0.2572 0.0020 0.47423 0.0696 16.82 2.47 2502 301 2924 136 3230 12 23 1.00

I9GS1327 0.2611 0.0007 0.63422 0.0162 22.83 0.59 3166 64 3220 25 3253 4 3 0.99

I9GS1328 0.2615 0.0008 0.56674 0.0566 20.44 2.04 2894 231 3112 95 3256 5 11 1.00

I9GS1330 0.1941 0.0007 0.50044 0.0099 13.39 0.27 2616 43 2708 19 2777 6 6 0.98

I9GS1331 0.1900 0.0007 0.48971 0.0130 12.83 0.34 2569 56 2667 25 2743 6 6 0.99

I9GS1333 0.1864 0.0008 0.48857 0.0105 12.56 0.28 2564 45 2647 21 2711 7 5 0.98

I9GS1334 0.1896 0.0012 0.45310 0.0204 11.85 0.54 2409 90 2592 42 2739 10 12 0.99

I9GS 1335 0.1837 0.0006 0.46585 0.0121 11.80 0.31 2465 53 2588 24 2686 6 8 0.99

I9GS1337 0.1852 0.0009 0.47595 0.0122 12.16 0.32 2510 53 2616 24 2700 8 7 0.98

I9GS1338 0.1888 0.0016 0.49585 0.0112 12.91 0.31 2596 48 2673 23 2732 14 5 0.98

Table2b

GeochronologicalresultsfromtheMahobadykes(GDMandGDM1).

Ratios Ages

Grain 207Pb/206Pb ±2␴ 206Pb/238U ±2␴ 207Pb/235U ±2␴ 206Pb/238U(Ma) ±2␴ 207Pb/235U(Ma) ±2␴ 207Pb/206Pb(Ma) ±2␴ %Disc RHO

GDM5a 0.07697 0.0006 0.17605 0.0051 1.868 0.06 1046 28 1070 20 1120 17 7 0.96

GDM6a 0.07697 0.0007 0.17509 0.0040 1.858 0.05 1041 22 1066 16 1120 18 7 0.93

GDM 7a 0.07671 0.0006 0.17551 0.0041 1.856 0.05 1043 23 1066 16 1114 16 6 0.95

GDM8a 0.07654 0.0006 0.17623 0.0041 1.860 0.05 1047 23 1067 16 1109 17 6 0.94

GDM 18a 0.07631 0.0006 0.18242 0.0041 1.919 0.05 1081 22 1088 16 1103 16 2 0.94

(8)
(9)

Table2b).Theweightedmean207Pb*/206Pb*ageforthesefiveanal- ysisyieldedanageof1113±7(2;MSWD=0.75;probabilityof fit=0.56;Fig.5d;Table2b).

4.2. Paleomagneticresults

The paleomagnetic directions/statistics for the individual NW–SE,ENE–WSWandNE–SWtrendingBundelkhandmaficdykes arelistedinTable1.Threedistinctpaleomagneticdirectionswere recordedforthedoleriticdykessuggestingthreeepisodesofdyke emplacementwithintheBCvaryinginspaceandtime.Astable uni-vectorialdemagnetizationtrendwasobservedforamajority ofthesesamplesduringthermal/AFtreatments.Thesamplesshow discreteunblockingtemperaturesbetween550and570C.The‘B’

samplestreatedwithAFdemagnetizationshowgradualdecreasein theirmagneticintensityandbehaveconsistentlyoverawiderange ofcoercivityspectrum(Fig.6bandd).

TheNRMintensitiesfortheENE–WSWtrendingMahobadyke samplesrangebetween0.4and0.1A/m(Fig.6aandb).Theinten- sityplotsyieldedunblockingtemperaturesbetween550and560C duringthermaldemagnetizationwhileAFdemagnetizationyielded widecoercivityspectrum,consistentwithlow-Timagnetiteasthe maincarrierofmagnetization(Fig.6a andb).Theoverallmean directioncalculated fromfour ENE–WSW Mahoba dykes has a declination=24.7andinclination=−37.9(=36;˛95=15.5)and aresultantvirtualgeomagneticpole(VGP)at38.7Sand49.5E (dp/dm=9.5/16.3;(Fig.9a).

Fifteendykes weresampledfromtheolderNW–SEtrending suiteandtwelveyielded consistentstablepaleomagneticdirec- tions(Table1).TheNRMintensitiesforthesesamplesvaryfrom 0.44to0.11A/m.Fig.6canddshowsthedemagnetizationbehav- ioroftwopilotdykespecimenstothethermalandAFtreatments.

Themeanpaleomagneticdirectionobtainedfromthese12dykes hasadeclination=155.3andinclination=−7.8(=21;˛95=9.6) afterinvertingonereversepolaritydykeI443C(Fig.9b;Table1).

Theoverallpaleomagneticpolecalculatedfromthesetwelvedykes fallsat58.5Nand312.5E(dp/dm=6.6/7.9).

In addition to these two directions from the NW–SE and ESE–WNWdykes,a thirddistinctsteeppaleomagneticdirection wasobtainedfromtwooftheNE–SWtrendingdykes.Theoverall mean direction calculated for these two dykes has a declina- tion=189.3 andinclination=+64.5 (Fig.9c). Thisissuggestive, though not conclusive, evidence for a third episode of dyke emplacementwithintheBC.

TheBundelkhandgranitichostrocksampleswerealsocollected atsitesI925 and I927withtheintenttoperforma baked con- tacttest. Unfortunately, the vast majority of thegranites were dominatedbymulti-domainmagnetiteandnoconsistentdirec- tionswereobtainedwithoneexception.AtsiteI925 numerous maficdykeletswereobservedtrellisingthegranitichostrock(Fig.

3b). These graniticsamples in contact with themafic dykelets weretaken about 1.5 away from themain dyke (Fig. 3a) and stablepaleomagneticdirectionswereobtainedforthehostgran- itesthat weresimilartothemain dykeI925(Fig.7aand b).In addition,oneofthedykes(siteI443C)isofopposite polarityto thecharacteristicmagnetizationobservedinthemajorityofdykes (declination=339andinclination=−21;=70;˛95=11.1).While notconclusive,thepartialbakedcontacttest,thedualpolaritysig- nalandthefactthatthethreesuitesofdykes(NE–SW,ENE–WSW andNW–SE)yielddistinctpaleomagneticdirectionssupportapri- marymagnetizationintheNW–SEtrendingoldersuiteofdykes

and negates arguments for a younger remagnetization in the region.

4.2.1. Rockmagneticresults

Representativeresultsofthermomagnetic analysis(suscepti- bilityvs.temperature)ofENE–WSWand NW–SEtrending dyke samplesareshowninFig.8(a–d).Theheatingandcoolingcurvesof magneticsusceptibilityfortheENE–WSWtrendingMahobadykes asshowninFig.8aandcdisplaytwomagneticphases.Theheating curvesshowaprominentpeakcenteredcloseto250–300Cand susceptibilitydropabove300C,indicatingthelikelyexistenceof pyrrhotite.Arapiddecreaseinthemagneticsusceptibilityaround 550–575Cindicatestheexistenceofmagnetite(Fig.8aand c).

Thecoolingcurveshowshighersusceptibilitywhichisprobably causedbytheex-solutionandconversionofTi-magnetitetopure magnetite(Fig.8aandc).

TherockmagneticstudiesonthedominantlyoccurringNW–SE trendingoldersuiteofdykesshownearlyreversibleCurietemper- aturerunscharacteristicofmagnetite(Fig.8bandd).Theheating CurietemperatureTcHofdykesampleI927-12is572.8C,andthe coolingCurietemperatureTcCis567.5C(Fig.8d).IRMcurvesalong withbackfieldcoercivityofremanencefromboththeseENE–WSW andNW–SEtrendingmaficdykesalsoindicatemagnetiteasthe principalmagneticcarrierinthesamples.Arapidriseinintensity nearsaturationat∼0.25to0.3Twasobservedformajorityofthe dykesamplesandtheirmagnetizationremainsconstantathigher fields,uptothehighestappliedfieldof1.2T.Thevaluesfortheback fieldcoercivityofremanencerangesbetween0.07and0.1mT(Fig.

8eandf).

5. Discussion

5.1. 1.1Gapaleomagnetism

TheVGPcalculatedfortheENE–WSWtrendingMahobadykes oftheBundelkhandcratonissignificantintermsofitsageand the direction.The U–Pb zirconage of 1113±7Ma for Mahoba dykesfallsinthesametimebracketastheMajhgawankimber- litethat intrudes both theLowerVindhyan sequence (∼1.6Ga) and the Baghain sandstone of the Kaimur Group (Upper Vin- dhyan). Gregory et al. (2006) dated Majhgawan kimberlite at 1073±13.7Mavia40Ar–39Aranalysisofphlogopitephenocrysts andobtainedavirtualgeomagneticpoleat36.8S,32.5E(dp=9; dm=16.6;alsoseeMillerandHargraves,1994)thatisstatistically indistinguishablefromthevirtualgeomagneticpolecalculatedfor theMahobadykeswarminthisstudy(Fig.10).Maloneetal.(2008) conductedapaleomagneticstudyontheBhander–RewaGroups (Upper Vindhyan) and obtaineda mean paleomagnetic poleat 44S,34.0E(A95=4.3). Wenotethat theVGP’s oftheMahoba dykesgeneratedinthisstudyandthepenecontemporaneousMajh- gawankimberlitearenearlyidenticaltothepaleomagneticpoles obtainedfromtheBhander–RewaGroupsintheUpperVindhyan sequence(Fig.10).

Azmietal.(2008)arguethatthepaleomagneticdatafromthe MajhgawankimberliteandtheBhander–Rewasequenceareindeed age-equivalentandlateNeoproterozoicinage,butthattheMajh- gawanphlogopitescrystallizedatdepthsome400millionyears earlier.Weacknowledgethatthepresenceofsimilarmagnetiza- tionsin three different unitsin close proximitymay alsoraise concernaboutthepossibilityofremagnetization.However,wenote thatthereisnoreported∼1.1Garemagnetizationeventwithinor inthevicinityoftheBundelkhandcraton.

Fig.4. (a)Backscatteredelectron(BSE)andcathodoluminescence(CL)imagesofselectedzircons/uraniumbearingmineralsfromENE–WSWtrendingMahobadykes.Scale barsin␮m.(b)Backscatteredelectron(BSE)andcathodoluminescence(CL)imagesofselectedzircons/uraniumbearingmineralsfromNW–SEtrendingdykes.Barlength correspondsto10–100␮m.

(10)

5.45.80.0735

0.0795

1100

1060

data-point error ellipses are 2

Sample GDM & GDM1 (5 analysis/3 grains) MSWD (of concordance) = 0.3 238 U 206 Pb [a] [c] Mean = 1 1 12.7 M a, 95% confidence MSWD = 0. 75, P robability = 0.56

± 7.4

207 Pb

Pb 206

11 1080

00

1110

1120

1140 1130 1090

207Pb Pb 206

1096+/-19 Ma

Sample GDM & GDM1 [d]

5.25.66.0

0.0785 0.0775 0.0765 0.0755 0.0745 0.196 0.192 0.188 0.184 0.180 2.052.35

data-point error ellipses are 2

Sample I9GS_13 (10 analysis/ 4 g rains) MSWD (of concordance) = 4.5

2760

207 Pb 235 U [b]

206Pb U 238

2.152.251.951.85

2720

2680

1900

1980

2060

0.41 0.31 5.36.76.9

data-point error ellipses are 2

(1 1 analysis/ 5 grains) Concordia Age = 1979.1 MSWD (Conc. + Equiv .) = 0.63 Probability (Conc. + Equiv .) = 0.90 ± 7.9 Ma

206Pb U 238

207 U 235 Pb

0.350.39 0.37 0.33 5.56.35.9

Sample I9GS_13

5.76.16.5

Fig.5.(a)Concordiadiagramforthe11spotsfromfiveconcordantzircon/baddeleyitegrainsandtipsfromsampleI9GS13yieldinganageof1979.1±7.9Ma(2;

MSWD=0.63;probability=0.90).(b)Tera–Wasserburgplotobtainedfrom10analysesonapopulationoffourfragmentaryzircons/baddeleyitesfromNW–SEtrending dykesampleI9GS 13yieldingmoderatelydiscordant207Pb/206Pbdatesbetween2777and2686Ma(2;MSWD=4.5)(c)Tera–Wasserburgconcordiainterceptageof 1096±19Ma(2;MSWD=0.3)derivedfromtheregressionthroughtheuncorrecteddatafromthe207Pb/206Pbforthefiveanalysisonthreezircongrainsandtipsfrom sampleGDMandGDM1(d)Theweightedmean207Pb*/206Pb*ageforthefiveanalysisfromsampleGDMandGDM1yieldedanageof1113±7(2;MSWD=0.75;probability ofconcordance=0.56).

(11)

200 400 600 800 T emperature (°C) 0

0.5 0

J/J

0

1.0

N E 570 C 550 C 450 C

N

NRM

W, U p 0.2 A/m

W, U p NRM

10 mT 20 mT 80 mT 40 mT

N

E AF (mT)

1.0 0.5 0 0

J/J

0

N Sample I923-4B

Sample I923-1A

V VH H

20 40 60 80 100

[a] [b]

AF (mT)

1.0 0.5 0

J/J

0 0.2 A/m

W,Up NRM 10 mT 20 mT

80 mT 40 mT

S

E

N

02 0 40 60 80 100 [d]

Sample I925-7B

200 400 600 800 T emperature (°C)

0

0.5 0

J/J

0

1.0

W, U p S

E Sample I925-22A NRM

300 450

550

N

V H [c]

V H

0.1 A/m

0.1 A/m

(12)

Additionalsupportfortheprimarynatureofmagnetizationis foundinbothUpperVindhyansequenceandtheNW–SEtrending oldersuiteofBundelkhanddykes.UpperVindhyansedimentary unitsshowatleastelevengeomagneticreversalssupportingapri- marymagnetizationintheserocks.Similarly,thepresenceofpartial bakedcontacttestyieldedbythegranitichostrocksamplestra- versedbythemaficdykeletsatsiteI925(Fig.7eandf)andthedual polaritymagnetizationshownbyoneofthedykes(siteI443C)sup- portaprimarymagnetizationintheNW–SEtrendingoldersuiteof Bundelkhanddykes.

5.1.1. AgeimplicationsfortheBhander–Rewasequenceofthe UpperVindhyan

TheageofdepositioninVindhyanbasinlocatedtothesouth oftheBundelkhandCraton(Fig.1)inthenorthernIndianpenin- sularshield,hasbeendebatedforover100years(Oldham,1893;

Auden,1933;CrawfordandCompston,1970;Venkatachalaetal., 1996;Maloneetal.,2008;Azmietal.,2008).Theonsetofsed- imentationin thelowerVindhyanSupergroupis generallywell constrainedataround1.6–1.8Gabyradiometricdata(Rasmussen etal.,2002a,b;Rayetal.,2002,2003Sarangietal.,2004;Kumar, 2001);howevertheageoftheUpperVindhyanisstillenigmaticand highlycontentiousduetolackoftargetssuitableforgeochronol- ogy,controversialfossilfindsandpoorlyconstrainedglobalstable isotopic correlations (Vinogradov et al., 1964; Crawford and Compston, 1970;Paul et al.,1975; Srivastava and Rajagopalan, 1988;Chakrabarti,1990;Smith,1992;KumarandSrivastava,1997;

Kumaretal.,2002;De,2003,2006;Rayetal.,2002,2003;Raietal., 1997;Gregoryetal.,2006;Maloneetal.,2008;Azmietal.,2008).

The Upper Vindhyan sedimentary rocks were typically cor- related withtheMarwar Supergroup (Rajasthan);sequences in theSalt Range ofPakistan and with theKrol–Tal Groupof the LesserHimalayas(McElhinnyetal.,1978;Klootwijketal.,1986;

MazumdarandBanerjee,2001).Thesecorrelations,however,are basedonsomewhatsimilarlithologiesandtheproximityofthe undeformedMarwarandUpperVindhyanstrata.

Thelithologiccomparisonsbetweentheseunitsareratherprob- lematic.Forexample,theevaporitedepositsareprevalentwithin theMarwar andSaltRanges,but absentintheUpper Vindhyan sequence. Malone et al. (2008) examined detrital zirconsuites fromboth theUpper Vindhyan sedimentaryrocksin Rajasthan andthenearbyMarwarSupergroup.The207Pb/206Pbagedistribu- tionobservedinthedetritalzirconanalysisoftheUpperBhander sandstoneyieldedseveralnoteworthypeaksbetween1850and 1050Ma (Maloneet al.,2008).Incontrast, detritalzirconsana- lyzedfrom theSonia and Girbarkhar sandstone of the Marwar Supergroupyieldedagepeaksinthe840–920Marange,acom- ponentcompletelyabsentintheUpperBhandersandstoneofthe VindhyanSupergroup.Hence,theresultsfromthedetritalzircon geochronologysuggestthatpreviouscorrelationsbetweenthetwo depositionalsequencesareincorrect.Maloneetal.(2008)hypoth- esizedthattheclosureageoftheUpperVindhyansedimentation wasnoyoungerthan1.0Gabasedontheirpaleomagneticstudyon theBhander–RewaGroupsoftheUpperVindhyanandthedetrital zirconworkonBhander–RewaunitsandtheMarwarSupergroup.

AdditionalsupportforaLateMesoproterozoicclosureagecame fromapaleomagnetic/geochronologicalstudyoftheMajhgawan kimberlite(Gregoryetal.,2006).

ThepaleomagneticandgeochronologicaldatafromtheMahoba dykesgeneratedinthisstudyisgermanetothediscussionofthe

sedimentationagesintheUpperVindhyanbasin.TheVGPobtained forthe∼1113MaMahobadykes(37.8S,49.5E)isnearlyidentical tothemeanpaleomagneticpolefromtheBhander–RewaGroups andtheMajhgawankimberlite(Fig.10;seediscussionabove).Our interpretationoftheMahobapaleomagneticandgeochronologi- calresultstherefore lendsadditionalsupporttotheproposalof Maloneet al.(2008)and Gregory etal. (2006)that theclosure ofsedimentationintheUpper Vindhyansequenceisolderthan

∼1.0Ga.

5.1.2. IndiainRodiniasupercontinentat1100Ma

TheLateMesoproterozoic(ca.1100Ma)hasbeenpostulatedas thetimeintervalfortheformationofthesupercontinentRodinia (McMenaminandMcMenamin,1990;Dalziel,1991;Moores,1991;

Hoffman, 1991). The existence of Rodinia is supported by the presenceofanumberof1300–900Maoldorogenic/mobilebelts (Dewey andBurke,1973)andassociatedgeologiclinks between thevariouscratonicnuclei(Young,1995;Dalziel,1997;Rainbird etal.,1998;Karlstrometal.,1999;SearsandPrice,2000;Dalziel etal.,2000).However,thegeometry/paleogeographyandduration oftheRodiniasupercontinentremainsextremelyfluidandcontro- versialduetoapaucityofwelldated,highqualitypaleomagnetic polesfromvariouscontinentalblocksformingthesupercontinent (Weiletal.,1998;MeertandPowell,2001;Meert,2001;Meertand Torsvik,2003;Lietal.,2008).

Oneoftheoutcomesofthis studyisourabilitytoconstrain thepaleoposition ofIndian sub-continent in Rodiniaconfigura- tionat∼1.1Ga.Therecentpaleomagnetic andgeochronological studiesfromtheMajhgawankimberlite(Gregoryetal.,2006)and Bhander–RewaGroups ofUpperVindhyan(Maloneetal.,2008) providedhighqualitypolestoconstrainthepaleogeographicposi- tionofIndiaat1.1Ga.

Thereareanumberofpaleomagneticpolesavailablefromother elementsoftheRodiniasupercontinentthataremoreorlesscoeval withthosefromIndia.ConsideringtheEastGondwanaelements, thekeypoleforthisintervalinAustraliaisthe∼1070Madoleritic rocksofBangemallsills(Wingateetal.,2002).TheBangemallpole achievesascoreofQ=7inthereliabilityschemeofVanderVoo (1990).

ThepaleogeographicpositionforLaurentiaisbasedonthecom- binedmeanpaleomagneticdatafromthePortageLakevolcanics and Keweenawan dykes (Pesonenet al., 2003; Swanson-Hysell et al., 2009).Based on the extensivefield and laboratorytests these poles are inferred to be primary and have precise zir- con/baddeleyiteU–Pbdatesof1095Ma(PortageLakeVolcanics) and ∼1109Ma(Keweenawanvolcanics), respectively(Hallsand Pesonen,1982; Davis and Sutcliffe,1985; Goodgeet al., 2008).

Morerecently,Swanson-Hyselletal.(2009)providedhighreso- lutionpaleomagneticdatafromaseriesofwell-datedbasaltflows atMamainsePoint,Ontario,intheKeweenawanRiftandsuggested thatthepreviouslydocumentedreversalasymmetryforthesevol- canicrocksisanartefactofthefastmotionoftheLaurentianplate towardstheequatoratthisinterval (alsoseeMeert,2009).The combinedmeanofthePortageLakevolcanicsandtheKeweenawan doleritespoleplacesLaurentiaatintermediatepaleolatitudesinour

∼1.1Gareconstruction.

TherearetwopaleomagneticpolesavailablefromtheBaltica between ∼1100 and 1123Ma. Most of the Rodiniareconstruc- tionsat∼1100MautilizethepaleomagneticdatafromtheBamble intrusionsinsouthernNorwaytoconstrainthepositionofBaltica

Fig.6. OrthogonalvectorplotsfromtheNW–SEandENE–WSWtrendingdykesoftheBundelkhandcratonshowingtypicalcharacteristicremanentmagnetizationdirections.

(a)ThermaldemagnetizationbehaviorofENE–WSWtrendingdykesampleI923-1A.(b)AlternatingfielddemagnetizationbehaviorofENE–WSWtrendingdykespecimen I923-4B.(c)ThermaldemagnetizationbehaviorofNW–SEtrendingdykesampleI925-22A.(d)AlternatingfielddemagnetizationbehaviorofNW–SEtrendingdykesample I925-7B.Solidsquaresrepresentprojectionsonthehorizontalplaneindicatedby‘H’;opensquaresrepresentprojectionontoaverticalplaneindicatedby‘V’.

(13)

Fig.7.BakedcontacttestonNW–SEtrendingdykeI925.(a)ThermaldemagnetizationbehaviorofthedykespecimenI925-7A.(b)Thermaldemagnetizationbehaviorofthe granitichostrockspecimenI925-39Aabout1.5mawayfromthemaindykeshowingsimilardirectionsasthemaindyke.

References

Related documents

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

SaLt MaRSheS The latest data indicates salt marshes may be unable to keep pace with sea-level rise and drown, transforming the coastal landscape and depriv- ing us of a

3 Collective bargaining is defined in the ILO’s Collective Bargaining Convention, 1981 (No. 154), as “all negotiations which take place between an employer, a group of employers

Harmonization of requirements of national legislation on international road transport, including requirements for vehicles and road infrastructure ..... Promoting the implementation

Angola Benin Burkina Faso Burundi Central African Republic Chad Comoros Democratic Republic of the Congo Djibouti Eritrea Ethiopia Gambia Guinea Guinea-Bissau Haiti Lesotho

1 For the Jurisdiction of Commissioner of Central Excise and Service Tax, Ahmedabad South.. Commissioner of Central Excise and Service Tax, Ahmedabad South Commissioner of

Daystar Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21.. Re-use and distribution is strictly not permitted, except for Open

The petitioner also seeks for a direction to the opposite parties to provide for the complete workable portal free from errors and glitches so as to enable