• No results found

On Schur multiplier and projective representations of Heisenberg groups

N/A
N/A
Protected

Academic year: 2023

Share "On Schur multiplier and projective representations of Heisenberg groups"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On Schur multiplier and projective representations of Heisenberg groups

Sumana Hatuia,, Pooja Singlab

a DepartmentofMathematics,IndianInstituteofScience,Bangalore560012,India

bDepartmentofMathematicsandStatistics,IndianInstituteofTechnologyKanpur,Kanpur208016, India

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received11November2019 Receivedinrevisedform12 November2020

Availableonline13March2021 CommunicatedbyA.Solotar

MSC:

20C25;20G05;20F18

Keywords:

Schurmultiplier

Projectiverepresentations Representationgroup Heisenberggroup

Inthisarticle,wedescribetheSchurmultiplierandrepresentationgroupofdiscrete Heisenberggroupsandtheirt-variants.Wegiveaconstructionofallcomplexfinite- dimensionalirreducibleprojectiverepresentationsofthesegroups.

©2021ElsevierB.V.Allrightsreserved.

1. Introduction

Thetheory ofprojective representationsinvolves understandinghomomorphismsfrom agroupinto the projective linear groups. Schur [21–23] extensively studied it. These representations appear naturally in the study of ordinary representations of groupsand are knownto havemany applications in other areas of Physics and Mathematics. We refer the reader to Section3 for precise definitions and related results regardingprojective representations of agroup.Bydefinition, everyordinaryrepresentation ofagroup is projective, buttheconverseisnottrue.Therefore, understandingtheprojective representationsisusually more intricate. Recall, the Schur multiplier of a group G is the second cohomology group H2(G,C×), whereC× isatrivialG-module.TheSchurmultiplierofagroupplaysanimportantroleinunderstanding its projective representations. By definition, every projective representation ρ of G is associated with a 2-cocycle α : G×G C× such that ρ(x)ρ(y) =α(x,y)ρ(xy) for all x,y G. Inthis case, we say, ρis

* Correspondingauthor.

E-mailaddresses:sumanahatui@iisc.ac.in(S. Hatui),psingla@iitk.ac.in(P. Singla).

https://doi.org/10.1016/j.jpaa.2021.106742 0022-4049/©2021ElsevierB.V.Allrightsreserved.

(2)

an α-representation. Conversely,forevery2-cocycle αofG,there exists anα-representationof G, namely Cα(G) thetwistedgroupalgebraofG.So,thefirststeptowardsunderstandingtheprojectiverepresentations is to describe the 2-cocyclesof G upto cohomologous, i.e., to understandthe Schurmultiplier ofG. The second step involves constructing α-representations of G for all [α] H2(G,C×), where [α] denotes the cohomology classofα.

The complexordinaryrepresentations offinite abelian groupsareeasy tounderstand. Forexample,all irreducibles are one dimensional. But this is not true for their projective representations. This problem has been studiedbymanyauthors,mostnotablyby Morris,Saeed-ul-Islam,and Thomasin[14],[15].All irreducible α-representations of (Z/nZ)k for some special α have been described in [14]. This work was generalized toall finiteabelian groupsforsomespecial classof cocyclesin[15]. Theirresultsare outlined in [10, Chapter 3] and [11, Chapter 8]. Later, Higgs [4] constructed an irreducible α-representation of elementaryabelianp-groups(Z/pZ)k, foreveryα.Also,hecountedthenumberof[α]H2((Z/pZ)k,C×) suchthatirreducibleα-representationsof(Z/pZ)kcontinuetobeirreduciblewhenrestrictedtoasubgroup of index p2. The corresponding results for (Z/prZ)k with r > 1 are not yet known. The projective representations of dihedral groupsare also well knownin theliterature; see [10, Theorem 7.3].Schur [23]

studiedtheprojectiverepresentationsofthesymmetricgroupsSn.HeprovedthattheSchurmultiplierofSn for,n≥4,isZ/2ZanddescribedtherepresentationgroupofSn,see [16,24] formoredetails.Nazarov [18,19]

explicitlyconstructedtheprojectiverepresentationsofSnbyprovidingsuitableorthogonalmatricesforeach generatorofthesymmetricgroup.

Inthisarticle,ourgoalistodescribetheSchurmultiplierandtheprojectiverepresentationsofthediscrete Heisenberg groupsandtheirt-variants.Thet-variantsoftheHeisenberggroups,denotedbyH2n+1t (R),are defined as follows. Let R be a commutativering withidentity and t∈ R. Define the groupH2n+1t (R) by theset Rn+1⊕Rn withmultiplicationgivenby,

(a, b1, . . . , bn, c1, . . . , cn)(a, b1, b2, . . . , bn, c1, c2, . . . , cn)

= (a+a+t(n

i=1bici), b1+b1, . . . , bn+bn, c1+c1, . . . , cn+cn).

For t = 1, we recover the classicalHeisenberg groupand throughout we denote H2n+11 (R) by H2n+1(R).

ExceptTheorem1.3,whichis trueforgeneralcommutativeringsRwithidentity, theringR willbeZ/rZ forr∈N∪ {0}.Itfollowsfrom[10,Corollary5.1.3] thattheprojectiverepresentationsofH2n+1t (Z/rZ) are obtainedfromthoseofH2n+1t (Z/pmi iZ),wherer=pm11pm22· · ·pmkk istheprimedecompositionofr.Hence, forr∈N,wecanfurtherassumethatt|r.

Ourfirst resultdescribestheSchurmultiplierofH2n+1t (R) forR=Z/rZ.ThedescriptionoftheSchur multiplierofH2n+1t (R) forn>1 differsfromthecasen= 1.Forn= 1,wefurtherassumethateitherr= 0 or risanoddnaturalnumber.

Theorem 1.1.

(i) For n>1,

H2(H2n+1t (Z/rZ),C×) =

(Z/rZ)2n2n1×(Z/tZ)2n+1, if r∈N, (C×)2n2n1×(Z/tZ)2n, if r= 0.

(ii) For r∈(2N+ 1)∪ {0},

H2(H3t(Z/rZ),C×) =

(Z/rZ)2×Z/tZ, if r∈(2N+ 1), (C×)2, if r= 0.

(3)

The Schur multiplier of H3(Z/rZ) was obtained in [8, Theorem 1.1]. A proof of the above result is includedinSection2.

Ournextaimisto describetheprojectiverepresentationsofH2n+1t (Z/rZ).Throughout thisarticle,we consider these groups as discrete (abstract) groups and therefore the obtainedprojective representations maynotbeunitaryorevencontinuous.ItiswellknownthattheprojectiverepresentationsofagroupGare obtainedfrom theordinaryrepresentations of itsrepresentation group;see Corollary 3.3. Ournext result describesarepresentationgroupofH3t(Z/rZ).Forr∈N∪ {0},defineagroupH(r,t) by

H(r, t) =x, y, z|[x, y] =zt,[x, z] =z1,[y, z] =z2, xr=yr=zrt= 1 .

Throughout the article,[x,y]=xyx−1y−1 andthe relations ofthe form [x,y] = 1 forgenerators xand y areomittedinthepresentationofagroup.

Theorem1.2. Forr∈(2N+ 1)∪ {0}andt|r,thegroupH(r,t) isarepresentationgroup ofH3t(Z/rZ).

See Section 3for the proof of this result. A construction of all finite-dimensional irreducible ordinary representationsofH(r, t) isincludedinSection4.Ournextresultfocusesontheprojectiverepresentations ofH2n+1t (R) forn>1.Recall thatthegroupH2n+1t (R) projectsontotheabelian groupR2n⊕R/tR(see (2.0.2)).Thefollowing resultis trueforgeneralcommutativeringsR withidentity.

Theorem 1.3.For n>1, every irreducibleprojectiverepresentation of H2n+1t (R) isobtained from an irre- ducibleprojective representationof theabelian groupR2n⊕R/tRviainflation.

Weobtainitsproof fromageneralresultregardingthecentralproductofgroups;seeCorollary3.4and Section3.1.Fromtheaboveresult,thequestionofdeterminingtheprojectiverepresentationsofH2n+1t (R) for n > 1 boils down to understanding the projective representations of abelian groups R2n⊕R/tR. As mentionedearlier, this resultisnotyet well understood.Next,forR=Z/rZ andn∈N, wedescribe the representationgroupofRn⊕R/tR.DefinethegroupFn(r,t) asfollows.

Fn(r, t) =xk, zij |1≤k≤n+ 1,1≤i < j≤n+ 1,[xi, xj] =zij, xt1=xrj = 1 .

Theorem1.4. Forr∈N∪ {0}andt|r,thegroupFn(r,t)isarepresentation groupof (Z/rZ)nZ/tZ.

A proofofthis resultisincluded inSection3.SeeSection4, foraconstructionof allfinite-dimensional ordinaryirreduciblerepresentationsof Fn(r,t).Wealsoobtainresultsregardingtheprojectiverepresenta- tions of extra-special groups. Recall that a p-group G is called an extra-special group if its center Z(G) is cyclicof order pand thequotient G/Z(G) is anon-trivialelementary abelianp-group.It iswell known thatforeachn≥1,therearetwoextra-specialpgroupsoforder p2n+1uptoisomorphismwithexponents eitherpor p2. Wedenote the isomorphismclassesof extraspecial groupsoforder p2n+1 with exponentp and p2 byES2n+1(p) and ES2n+1(p2) respectively.From definition,thegroupsES2n+1(p) areisomorphic to H2n+1(Z/pZ). Above, we have already stated the results regarding the projective representations for H2n+1(Z/pZ).Combiningthiswithournextresult,wecompletethepictureforextra-specialp-groups.

Corollary1.5.

(i) Everyprojectiverepresentation of ES3(p2)isequivalent toanordinary representation.

(ii) For n > 1, every irreducible projective representation of ES2n+1(p2) is obtained from an irreducible projective representationof (Z/pZ)2n viainflation.

(4)

Above,(i)followsbecausetheSchurmultiplierofES3(p2) istrivial;see[9,Theorem3.3.6].Fortheproof of (ii),seeSection3.1.

2. SchurmultiplierofH2n+1t (Z/rZ),rN∪ {0}

In this section, we prove Theorem 1.1. Throughout this article, we use xy to denote the conjugation yxy1.ThecommutatorsubgroupandcenterofagroupGaredenotedbyG andZ(G),respectively.

Recall, foragroupGandi∈N, Hi(G,C×)=Zi(G,C×)/Bi(G,C×),whereZi(G,C×) andBi(G,C×) consists ofcocyclesandcoboundariesof Gi respectively.Weshallcall elementsofZ2(G,C×) as 2-cocycles (or sometimesjustcocycleswhenitis clearfromthecontext) andelements ofH2(G,C×) thecohomology classes.Foranelementα∈Z2(G,C×),thecorrespondingelementofH2(G,C×) willbedenotedby[α].For 2-cocycles α,β∈Z2(G,C×) wesayαis cohomologousto β,whenever[α]= [β].

A centralextension,

1→A→G→G/A→1 (2.0.1)

is called a stem extension, if A Z(G)∩G. For a given stem extension (2.0.1), the Hochschild-Serre spectral sequence[5,Theorem2,p. 129] forcohomologyofgroupsyieldsthefollowingexactsequence.

1Hom(A,C×)−−→tra H2(G/A,C×)−−→inf H2(G,C×), where tra : Hom(A,C×)H2(G/A,C×) givenbyf [tra(f)],where

tra(f)(x, y) =f(μ(x)μ(¯y)μ( ¯xy)−1), x, y∈G/A,

for a section μ : G/A G, denotes the transgression homomorphism and the inflation homomorphism, inf : H2(G/A,C×) H2(G,C×) is given by [α] [inf(α)], where inf(α)(x,y)= α(xA,yA). For groups H2n+1t (R),we havethefollowingstemextension,

1→tR−→f H2n+1t (R)−→g R/tR⊕R2n 1, (2.0.2) given by

f(tr)(tr,0,0,· · ·,0

2n-times

)

g(a, b1, . . . , bn, c1, . . . , cn) = (amod (tR), b1, . . . , bn, c1, . . . , cn).

Letα∈Z2(G1×G2,C×).Recallthat

H2(G1×G2,C×)=θH2(G1,C×)×H2(G2,C×)×Hom(G1/G1⊗G2/G2,C×) (2.0.3) is anisomorphismdefinedby

θ([α]) = (resGG11×G2([α]),resGG12×G2([α]), ν),

whereν : H2(G,C×)Hom(H⊗K,C×) isahomomorphismgivenbyν([α])(˜g1⊗g˜2)=α(g1,g2)α(g2,g1)−1, forg˜1=g1G1 and˜g2=g2G2.Wewillusethis resultwithoutexplicitlyreferringtoit.

Now, we recallthedefinitionof thecentralproductof groups.A groupGis calledacentralproduct of itstwo normalsubgroupsH and KamalgamatingAifG=HK withA=H∩K and[H,K]= 1.

(5)

Theorem2.1.([3,TheoremAandTheorem3.6])LetGbeacentralproductoftwonormalsubgroupsH and K amalgamatingA=H∩K.Set Z=H∩K.

(i) Thentheinflation mapinf : H2(G/Z,C×)H2(G,C×)issurjectiveand H2(G,C×)= H2(G/Z,C×)/N, where N∼= Hom(Z,C×).

(ii) The subgroup Hom(Z,C×) embeds in H2(H/A,C×)/LH2(K/A,C×)/M via tra : Hom(Z,C×) H2(G/Z,C×),whereL∼= Hom (A∩H)/Z,C×

,M∼= Hom (A∩K)/Z,C× . Lemma2.2. Letr∈N∪ {0}andt divides r.

(i) H2(Z/tZ(Z/rZ)k,C×)= (Z/tZ)k(Z/rZ)k(k−1)2 .Further,any α∈Z2(Z/tZ(Z/rZ)k,C×)with k≥2satisfies [α]= [ν] forν∈Z2(Z/tZ(Z/rZ)k,C×)suchthat

ν (m1, m2, . . . , mk, mk+1),(n1, n2, . . . , nk, nk+1)

=

1i<jk+1

μni,jimj,

forsomeμi,jC× satisfying μri,j= 1 for2≤i< j≤k+ 1andμt1,l = 1 for2≤l≤k+ 1.

(ii) Anyα∈Z2(H3t(Z/rZ),C×)satisfies[α]= [σ]forσ∈Z2(H3t(Z/rZ),C×)suchthatforx= (m1,n1,p1) andy= (m2,n2,p2)we have,

σ(x, y) =

λ(m2p1+tn2p1 (p21−1))μ(n1m2+tp1n2 (n22−1)+tp1n1n2), r= 0, λ(m2p1+tn2p1 (p21−1))μ(n1m2+tp1n2 (n22−1)+tp1n1n2)δ(p1n2), r∈N,

forsomeλ,μ,δ∈C× suchthatλr=μr=δt= 1.

Proof. (i) Schurmultiplier offinitely generated abelian groupsfollows from (2.0.3).We use[13, Theorem 9.4] forthecocycledescription.WeobtainthateverycocycleofZ/tZZ/rZiscohomologoustoacocycle oftheform

α((m1, m2),((n1, n2)) =σ1(m1, n12(m2, n2)g(n1, m2),

whereσ1H2(Z/tZ,C×),σ2H2(Z/rZ,C×) andg:Z/tZZ/rZC× isamapsuchthatg(n1,m2)= g(1,1)n1m2 =μn1,21m2.Thegeneralresultfollowsusinginductionargumentonk.

(ii)TheproofofthisresultgoesalongthesamelinesasPacker [20,Proposition 1.1].Followingthecited proof,we obtainthateveryα∈Z2(H3t(Z/rZ),C×) iscohomologousto acocycleoftheform

β((m1, n1, p1),(m2, n2, p2)) =

λ(m2p1+tn2p1 (p21−1))μ(n1m2+tp1n2 (n22−1)+tp1n1n2)δ(p1n2),

forsomeλ,μ,δ∈C× suchthatλr=μr=δr= 1 Firstassumethatr= 0.Choosesomeδ1C× suchthat δt1=δ.Now,define afunctionb:H3t(Z)C× byb(m,n,p)=δm1 .Then

b(m1, n1, p1)−1b(m2, n2, p2)−1b(m1+m2+tp1n2, n1+n2, p1+p2) =δp1n2

isacoboundary.Hence,everycocycleα∈Z2(H3t(Z),C×) iscohomologoustoacocycleoftheform

(6)

σ((m1, n1, p1),(m2, n2, p2)) =λm2p1+tn2p1 (p21−1)μn1m2+tp1n2 (n22−1)+tp1n1n2, forsomeλ,μ∈C×.

Now, assumer∈N.Ifwedefine amap b:H3t(Z/rZ)C× byb(m1,n1,p1)=δm1,thenwe have b(m1, n1, p1)1b(m2, n2, p2)1b(m1+m2+tp1n2, n1+n2, p1+p2) =δtp1n2,

which saysthatδtp1n2 is cohomologousto atrivialcocycle.Then everycocycleα∈Z2(H3t(Z/rZ),C×) is cohomologousto acocycleoftheform

σ((m1, n1, p1),(m2, n2, p2)) =λm2p1+tn2p1 (p21−1)μn1m2+tp1n2 (n22−1)+tp1n1n2δp1n2, forsomeλ,μ,δ∈C× suchthatλr=μr=δt= 1.

Corollary 2.3.Letr >1andμ isaprimitiver-th rootof unity.Thenα∈Z2(Z/rZZ/rZ)definedby α((m, n),(m, n)) =μnm,

correspondstoanon-trivial elementof H2(Z/rZZ/rZ,C×).

2.1. Proofof Theorem1.1

Proof. (i)SchurmultiplierofH2n+1t (Z/rZ)forn>1:LetG=H2n+1t (Z/rZ),r∈N∪{0}andn>1.Then thegroupGisacentralproduct ofK1=H2nt 1(Z/rZ) andK2=H3t(Z/rZ) amalgamatingatA=Z(G).

ConsiderZ=K1∩K2 whichisisomorphictotZ/rZ.HereG/Z∼=A/Z⊕(K1/A⊕K2/A)∼=Z/tZ(Z/rZ)2n. ByTheorem2.1,itfollowsthatthehomomorphisminf of thefollowing exactsequence issurjective.

1Hom(Z,C×)−−→tra H2(G/Z,C×)−−→inf H2(G,C×).

Also,Hom(tZ/rZ,C×) embeds inH2(K1/A,C×)H2(K2/A,C×) via tra homomorphism.Hence, H2(G,C×)= H

2(K1/A,C×)×H2(K2/A,C×)

Hom(Z,C×) ×Hom((Z/rZ)4n−4,C×)×(Z/tZ)2n

= Hom((Z/rZ)2n

2−5n+4,C×)

Hom(tZ/rZ,C×) ×Hom((Z/rZ)4n−4,C×)×(Z/tZ)2n

= Hom((Z/rZ)

2n2−n,C×)

Hom(tZ/rZ,C×) ×(Z/tZ)2n. (2.1.1)

Here the map inf : H2(G/Z,C×)H2(G,C×) is surjective, soevery cocycleofZ2(H2n+1t (Z/rZ),C×) is cohomologoustoacocycleoftheform

β((l1, m1, . . . m2n),(l1, m1, . . . m2n)) =

1≤i<j≤2n

μi,jmimj

2n

k=1

μkl1mk,

forsomeμi,jkC× andμtk= 1 for 1≤k≤2n,followsfrom Lemma2.2(i).

If r = 0, then μi,j C× and μtk = 1 for 1 i < j 2n, 1 k 2n. Let δ C× and define a map b : H2n+1t (Z) C× such that b(l1,m1,. . . m2n) = (δ1/t)l1. By using the map b, we ob- tain that δ(1≤i≤nmimn+i) is cohomologous to a trivial cocycle. Therefore, up to cohomologous we can choose (μi,n+i)1≤i≤n (C×)n/(δ,δ,δ,· · ·,δ) | δ C× which is isomorphic to (C×)n−1. As by (2.1.1), (C×)2n2n1×(Z/tZ)2n embeds inH2(H2n+1t (Z),C×),hence

(7)

H2(H2n+1t (Z),C×)= (C×)2n2n1×(Z/tZ)2n.

If r N, then μri,j = 1 for 1 i < j 2n and μtk = 1 for 1 k 2n. We observe that x(t1≤i≤nmimn+i) is cohomologous to a trivial cocycle, by using the map b : H2n+1t (Z/rZ) C× such thatb(l1,m1,. . . m2n)=xl1, for x∈ C×,xr = 1.So, upto cohomologous, we canchoose(μi,n+i)1≤i≤n (Z/rZ)n/(xt,xt,xt,· · ·,xt)|x∈Z/rZ = (Z/rZ)n1×Z/tZ.Therefore,by(2.1.1),

H2(H2n+1t (Z/rZ),C×)= (Z/rZ)2n2n1×(Z/tZ)2n+1.

(ii)SchurmultiplierofH3t(Z/rZ):ThegroupG=H3t(Z/rZ) isthesemidirectproductofnormalsubgroup N =(m,n) =Z/rZZ/rZandasubgroupT =p =Z/rZ, wheretheactionof T onN is definedby p.(m,n)= (m+tpn,n).HereT actonHom(N,C×) by(x.f)(n)=f(x.n) forf Hom(N,C×),n∈N,x∈ T.Then

H1(T,Hom(N,C×)) = Z1(T,Hom(N,C×)) B1(T,Hom(N,C×)), where

Z1(T,Hom(N,C×)) ={f :T Hom(N,C×)|f(xy) = (x.f(y))f(x)∀x, y∈T}

andB1(T,Hom(N,C×)) consistsoff ∈Z1(T,Hom(N,C×)) suchthatthere existsg∈Hom(N,C×) satis- fyingf(x)= (x.g)g−1 forallx∈T.

Givenα∈Z2(N,C×),letαx∈Z2(N,C×) bedefinedbyαx(n,n)=α(x.n,x.n) forx∈T andn,n∈N.

LetH2(N,C×)T denotetheT-stablesubgroupofH2(N,C×),i.e.,

H2(N,C×)T ={[α]H2(N,C×)|x] = [α]∀x∈T}. Wehavethefollowing exactsequence.

1H1(T,Hom(N,C×))−→ψ H2(G,C×)−−→res H2(N,C×)T,

whichfollowsfrom[9,Theorem2.2.5] and[12,Corollary2.5] forthefiniteandinfinitediscretecasesrespec- tively.Here themapψisdefinedby

ψ([χ])((m1, n1, p1),(m2, n2, p2)) =χ(p1)(m2, n2),

for χ H1(T,Hom(N,C×)). Since, by Corollary 2.3, every cocycleα Z2(N,C×) is cohomologous to a cocycleoftheformα((m1,n1),(m2,n2))=μn1m2,soforp∈T,wehave

αp((m1, n1),(m2, n2)) =α((m1+tpn1, n1),(m2+tpn2, n2)) =μn1m2+tpn1n2. Then[αp]= [α] as

ααp−1((m1, n1),(m2, n2)) =b(m1, n1)b(m2, n2)b(m1+m2, n1+n2)−1, whereb:N C× definedbyb(m,n)=μtpn2/2 (asrisodd).Hence,

H2(N,C×)T = H2(N,C×).

Now,wedefine amap φ: H2(N,C×)H2(G,C×) givenby[α][φ[α]], where

(8)

φ([α])((m1, n1, p1),(m2, n2, p2)) =μn1m2+tp1n2 (n22−1)+tp1n1n2.

Thenthecompositionmapres◦φ: H2(N,C×)H2(N,C×) becomestheidentityhomomorphism.Hence, φisinjectiveandres issurjectivemap.

Thuswe have

H2(H3t(Z/rZ),C×)= H1(T,Hom(N,C×))×H2(N,C×). (2.1.2) Now onwards,weconsider thecasesr= 0 andr∈N separately.

Case 1:r= 0.Wefollowtheproofof[12,Theorem2.11].Weshowthat H1(T,Hom(N,C×))=C×.

Define a map τ : Z1(T,Hom(N,C×)) (C×)2 by τ(χ) = (χ(1)(1,0),χ(1)(0,1)). Then τ is injec- tive. For c1,c2 C×, define χ(p)(m,n) = c(mp+tn1 p(p−1)2 )cpn2 . By [12, Lemma 2.7], it follows that χ∈Z1(T,Hom(N,C×)) andτ(χ)= (c1,c2).So,τ issurjective.Hence,viatheisomorphismτ,wehave

Z1(T,Hom(N,C×))= (C×)2.

Here B1(T,Hom(N,C×)) isthesetofallf :T Hom(N,C×) satisfyingthefollowing, f(p)(m, n) =g(m+tpn, n)g(m, n)1 forg∈Hom(N,C×), m, n∈N, p∈T.

Observethatτ(f)= (1,g((1,0)t)) andhence,τ(B1(T,Hom(N,C×)))=C×.Thusitfollows that H1(T,Hom(N,C×))=C×.

Hence,by(2.1.2),

H2(H3t(Z),C×)= (C×)2. Case 2:rN.Forthiscase,ourclaimis

H1(T,Hom(N,C×))=Z/rZZ/tZ.

Let ζ be a primitive r-th root of unity and Hom(N,C×) = φ12 where φ1 : N C× is defined by φ1(1,0) = ζ,φ1(0,1) = 1 and φ2(1,0) = 1,φ2(0,1) = ζ. Now, T acting on Hom(N,C×) by pφ1(1,0) = φ1(1,0) and pφ1(0,1) =φ1(tp,1) =ζpt. So, pφ1 = φ1φpt2 . Similarlyit is easy to see thatpφ2 =φ2. Now, define amap N orm: Hom(N,C×)Hom(N,C×) by

N orm(φ) =

pT pφ.

Consider anothermap h: Hom(N,C×)Hom(N,C×) defined byh(φ)=pφφ−1, where pis agenerator ofT.ItisawellknownresultthatH1(T,Hom(N,C×)=ker(N orm)image(h) (seestep3intheproof ofTheorem5.4 of [6]).Since risodd,itiseasytocheck thatN orm(φ1)= 1 andN orm(φ2)= 1.Therefore,ker(N orm)= φ12 andimage ofhis< φt2>.Therefore,H1(T,Hom(N,C×)=Z/rZZ/tZ.Thusby(2.1.2),

H2(H3t(Z/rZ),C×)= (Z/rZ)2×Z/tZ.

(9)

3. Projective representationsofH2n+1t (R)

Inthissection,wefirstrecallsomebasicdefinitionsandresultsregardingprojectiverepresentationsofa groupandthenproveTheorems 1.2,1.3,and1.4.

LetV beacomplexvectorspace.AprojectiverepresentationofagroupGisahomomorphismofGinto theprojectivegenerallineargroup,PGL(V)= GL(V)/Z(V).Equivalently,aprojective representationisa mapρ:G→GL(V) suchthat

ρ(x)ρ(y) =α(x, y)ρ(xy), ∀x, y∈G,

forsuitablescalarsα(x,y)∈C×.BytheassociativityofGL(V),themap(x,y)→α(x,y) givesa2-cocycle of G, i.e., an element of Z2(G,C×). Wedenote this cocycle byα itself and say ρ is an α-representation.

Twoprojectiverepresentations ρ1:G→GL(V) and ρ2 :G→GL(W) are called projectivelyequivalent if thereis aninvertible T Hom(V,W) andamapb:G→C× suchthat

b(g)T ρ1(g)T1=ρ2(g) g∈G.

Equivalentprojective representationsaresaidto haveequivalent2-cocycles. Thustwo cocyclesα,α : G→C×areequivalentifthereexistsamapb:G→C× suchthatα(x,y)= b(x)b(y)b(xy) α(x,y) forallx,y∈G.

IntermsofSchurmultiplier,thismeansthattherepresentationsρandρ areequivalentimpliesthattheir cocyclesα and α are cohomologous, i.e., [α]= [α] in H2(G,C×).It is to be noted thatto determine all projective representations of G up to equivalence, it is enough to determine projectively inequivalent α- representationsofGforasetofall2-cocyclerepresentativesofelementsofH2(G,C×).Wefurthernotethat twoprojectivelyequivalentα-representations1,V) and(ρ2,W) arecalledlinearlyinequivalentifb(g)= 1 forall g∈G.Any α-representation ρofGsuch thatαis cohomologousto trivial2-cocycle, willbe called equivalentto anordinaryrepresentationofG.

Theset of allinequivalentirreducible ordinaryrepresentationsof agroupGwillbe denotedby Irr(G).

LetIrrα(G) be thesetofcomplexlinearlyinequivalentirreduciblerepresentationsofGcorresponding toa 2-cocycleα.Wecanfurtherassumethatαisnormalizedcocycle,i.e., α∈Z2(G,C×) satisfies

α(g,1) =α(1, g) = 1, ∀g∈G. (3.0.1) Throughout this section, we assume that the cocycle representative of [α] with which we work, satisfies (3.0.1).Next,werecallthedefinitionofarepresentationgroup(alsocalled acoveringgroup) ofagroupG from [21,Page23].

Definition 3.1(Representation groupof G).A groupG is called arepresentation groupofG, ifthere isa centralextension

1→A→G→G→1 suchthatcorresponding transgressionmap

tra : Hom(A,C×)H2(G,C×) isanisomorphism.

In[21],Schurprovedthattherepresentationgroupofafinitegroupalwaysexists.Forinfinitegroups,the parallelresultisalsoknown;see[2] forrelatedresults.Thenextresultrelatestheprojectiverepresentations ofagroupGanditscertainquotientgroup.

(10)

Theorem 3.2. Let A be a subgroup of a finitely generated group G such that A G∩Z(G) and, [α] H2(G,C×)beintheimageofinf : H2(G/A,C×)H2(G,C×).Then

{[β]H2(G/A,C×)|inf([β])=[α]}Irrβ(G/A) and Irrα(G)are inbijectivecorrespondencevia inflation.

Proof. Wehavethefollowingexactsequence

1Hom(A,C×)−→tra H2(G/A,C×)−→inf H2(G,C×).

Fix a [β] H2(G/A,C×) such that inf([β]) = [α]. Due to the exactness of the above sequence, the set

χ∈Hom(A,C×)[β]tra(χ) consists ofalldistinct elementsofH2(G/A,C×) that mapto[α] viainf.

Let ρ: G→ GL(V) be anirreducible α-representation of G. Then there exists arepresentative of [β], denotedby β itself, suchthatα(g,h)=β(gA,hA) for allg,h∈G.Therefore,for alla∈Aand g∈G, we haveα(g,a)=α(a,g)= 1.Hence,

ρ(g)ρ(a) =ρ(a)ρ(g), ∀a∈A, g∈G.

Sinceeveryirreduciblerepresentationinourcaseiscountabledimensional,bySchur’slemma(duetoDixmier forcountabledimensionalcomplexrepresentations),foralla∈A,ρ(a) isascalarmultipleofidentity.Further α(a,a)= 1 for all a,a ∈A, so ρ|A is ahomomorphism on A. Let μ: G/A→G be asection of G/Ain G such thatgA =μ(gA)A for all g ∈G. Every element g ∈G canbe written uniquelyg = agμ(gA) for some ag ∈A. Note thattra(ρ|A)(gA,hA)=ρ(μ(gA)μ(hA)μ(ghA)−1). Now, define ρ˜: G/A→GL(V) by

˜

ρ(gA)=ρ(μ(gA)).Then

˜

ρ(gA) ˜ρ(hA) ˜ρ(ghA)1=ρ(μ(gA))ρ(μ(hA))ρ(μ(ghA))1

=β(gA, hA)ρ(μ(gA)μ(hA))ρ(μ(ghA))1

=β(gA, hA)ρ(μ(gA)μ(hA)μ(ghA)−1μ(ghA))ρ(μ(ghA))−1

= (βtra(ρ|A))(gA, hA)α−1(μ(gA)μ(hA)μ(ghA)−1, μ(ghA))

= (βtra(ρ|A))(gA, hA),

(3.0.2)

where α−1(μ(gA)μ(hA)μ(ghA)−1,μ(ghA))= 1 as μ(gA)μ(hA)μ(ghA)−1 ∈A. Thusρ˜isβ-representation of G/Asuchthat[β]= [β][tra(ρ|A)] andinf([β])= [α]. Sinceρis irreduciblerepresentationand ρ(a) isa scalarmultipleofidentityfora∈A,ρ˜isalsoanirreduciblerepresentation.

Define amap

φ: Irrα(G)−→

{[β]∈H2(G/A,C×)|inf([β])=[α]}

Irrβ(G/A)

by φ(ρ) = ˜ρ. It is easy to see that φ is awell defined map. Next, we prove that φ is injective. Suppose ρ,ρIrrα(G) andφ(ρ)= ˜ρ,φ(ρ)= ˜ρ suchthatρ˜andρ˜ arelinearlyequivalent,i.e.,ρ˜(gA)=Tρ(gA)T˜ 1 forallg∈GandforsomeT GL(V).Sinceρ˜andρ˜ areβtra(ρ|A) andβtra(ρ|A)-representationsofG/A respectively, tra(ρ|A)= tra(ρ|A). Buttra is injective,so ρ|A=ρ|A. Nowit is easyto check thatρ(g)= T ρ(g)T1for g∈G.Hence,φisinjective.Itremainstoshow thatφissurjective. Letρ˜:G/A→PGL(V) be anirreducibleβ1-projective representationsuchthatinf(β1)=α.Define ρ:G→PGL(V) via inflation, i.e., ρ(g)= ˜ρ(gA).Then ρisanirreducible α-representationofGandφ(ρ)= ˜ρ.

Corollary 3.3.LetAbe acentralsubgroup ofafinitelygenerated groupGsuchthat G isarepresentation group ofG=G/A.Thenthereisabijection betweenthesets [α]H2(G,C×)Irrα(G)andIrr(G).

References

Related documents

This report provides some important advances in our understanding of how the concept of planetary boundaries can be operationalised in Europe by (1) demonstrating how European

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

3 Collective bargaining is defined in the ILO’s Collective Bargaining Convention, 1981 (No. 154), as “all negotiations which take place between an employer, a group of employers

Women and Trade: The Role of Trade in Promoting Gender Equality is a joint report by the World Bank and the World Trade Organization (WTO). Maria Liungman and Nadia Rocha 

Harmonization of requirements of national legislation on international road transport, including requirements for vehicles and road infrastructure ..... Promoting the implementation

China loses 0.4 percent of its income in 2021 because of the inefficient diversion of trade away from other more efficient sources, even though there is also significant trade

The scan line algorithm which is based on the platform of calculating the coordinate of the line in the image and then finding the non background pixels in those lines and