• No results found

On the lacunary spherical maximal function on the Heisenberg group

N/A
N/A
Protected

Academic year: 2023

Share "On the lacunary spherical maximal function on the Heisenberg group"

Copied!
32
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

On the lacunary spherical maximal function on the Heisenberg group

Pritam Ganguly,Sundaram Thangavelu

DepartmentofMathematics,IndianInstituteofScience,560012Bangalore,India

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received26December2019 Accepted15October2020 Availableonline27October2020 CommunicatedbyCamilMuscalu MSC:

primary43A80

secondary22E25,22E30,42B15, 42B25

Keywords:

Lacunarysphericalmeans Koranyisphere

Heisenberggroup Lp-improvingestimates Sparsedomination Weightedtheory

In this paper we investigate the Lp boundedness of the lacunarymaximalfunctionMHlacn associatedto thespherical means Arf taken over Koranyi spheres on the Heisenberg group.CloselyfollowinganapproachusedbyM.Laceyinthe Euclideancase, weobtain sparse boundsfor these maximal functionsleadingtonewunweightedandweightedestimates.

The key ingredients in the proof are the Lp improving propertyof theoperator Arf and a continuity propertyof thedifferenceArfτyArf,whereτyf(x)=f(xy−1) isthe righttranslationoperator.

©2020ElsevierInc.Allrightsreserved.

1. Introductionandthemain results

The study of spherical means has received considerable attention in the last few decades.In1976,SteinfirstconsideredthesphericalmaximalfunctiononRn definedby

* Correspondingauthor.

E-mailaddresses:pritamg@iisc.ac.in(P. Ganguly),veluma@iisc.ac.in(S. Thangavelu).

https://doi.org/10.1016/j.jfa.2020.108832

0022-1236/©2020ElsevierInc. Allrightsreserved.

(2)

M f(x) = sup

r>0|f ∗μr(x)|= sup

r>0

|y|=r

f(x−y)dμr(y)

where μr is the normalised measure on the Euclidean sphere of radius r. In [18], for n≥3 heprovedthat

M fp≤Cfp if and only ifp > n n−1.

Later Cowling-Mauceri[7] revisitedthisand provedStein’sresultusing completelydif- ferent arguments. In 1986,Bourgain [3] settled thecase n= 2. On the other hand,as provedbyC.P.Calderon [4],thelacunary sphericalmaximalfunction

Mlacf(x) = sup

j∈Z|f∗μ2j(x)|

turned out tobe bounded on Lp(Rn) for all1< p<∞.Recently, M.Lacey hascome up withanew ideato provethese two resultsandmuch more.In [13] hehas obtained sparse boundsforbothM and Mlac leadingto newweightednormestimates.

Our aiminthis paper isto prove sparse bounds forthelacunary sphericalmaximal functions ontheHeisenberg group.Recall thattheHeisenberg groupHn :=Cn×R is equipped withthegroupoperation

(z, t).(w, s) :=

z+w, t+s+1

2(z.w)¯

, (z, t),(w, s)Hn.

On this group,for every r > 0,we have afamily of non-isotropic dilations defined by δr(z,t) := (rz,r2t), (z,t) Hn These δr are automorphisms of the group Hn. The Koranyi normof(z,t) inHn isdefinedby

|(z, t)|:= (|z|4+ 16t2)14

and itis easyto seethatr(z,t)|=r|(z,t)|, i.e.,thenorm ishomogeneousof degree1 relativetothesenon-isotropicdilations.TheHaarmeasureonHnissimplytheLebesgue measure dzdt. Asinthe Euclideancase, thisHaar measure hasapolardecomposition.

Let SK := {(z,t) Hn : |(z,t)| = 1}be the unitsphere with respect to the Koranyi norm. Then there is aunique Radon measure σ on SK such that for every integrable functiononHn wehave

Hn

f(z, t)dzdt=

0

SK

f(δrω)rQ−1dσ(ω)dr (1.1)

where Q= (2n+ 2) is knownas thehomogeneousdimensionofHn.

Letusfixsomemorenotationsfirst.Givenf onHn,itsdilationδrf issimplydefined by δrf(z,t) =fr(z,t)), (z,t) Hn. More generally, if U is a distribution on Hn,

(3)

thenitsdilationδrU is definedbyδrU,φ:=U,δrφ, ∀φ∈Cc(Hn).Weletσr=δrσ anddefinethesphericalmeanvalueoperatorAr by

Arf(x) =f∗σr(x) =

|y|=1

f(x.δry−1)dσ(y).

Theassociated sphericalmaximal functionMHnf(x)= supr>0|Arf(x)|wasstudiedby M.Cowlingin[5] whereheestablishedthefollowingresult.

Theorem 1.1. The spherical maximal functionMHn is bounded on Lp(Hn)for all p>

2n+1 2n .

ThisistheHeisenberganalogueofStein’stheoremonRnbutCowlingusedanentirely different approach in proving this. He used a very clever idea of expressing σr as a weightedintegralofRiesz potentials whichare easyto handle,see Theorem3.2 below.

Otherproofsoftheabovetheoremarealsoavailableintheliterature.ByadaptingStein’s secondproofoftheEuclideancase[19] (Corollary 3inXI,section 3),OliverSchmidt,in hisstillunpublishedwork[17],studiedmaximalfunctionsonstratifiedgroupsassociated to hyper-surfaces with a non vanishing rotational curvature, giving another proof of theabovetheorem of Cowling. Alsoin[10], usinga squarefunction argument, Fischer provedtheboundednessofthesphericalmaximaloperatoronfunctionsonfreesteptwo nilpotentLiegroupswhichincludestheaboveresultofCowling.

Inthis paperweareinterestedinestablishingananalogueofCalderon’s theoremfor the Heisenberg group.Though the methodsused in [4] are adaptations of the original ideaofStein[18],itisunlikelythataproofalongsimilarlinesispossible.Thisismainly becausethegroupFouriertransformofthemeasureσrisnotknownexplicitly.Tostate ourmainresult,wefixδ∈(0,1/96) andlet

MHlacnf(x) = sup

k∈Z|Aδkf(x)|

standforthelacunarysphericalmaximalfunctiononHn. Weprove:

Theorem 1.2.Let n≥2.The lacunary spherical maximal function MHlacn is bounded on Lp(Hn)forall1< p<∞.

This is the analogue of Calderon’s theorem for the spherical averages on Koranyi spheres. Inview of the workby Fischer [10], it is natural to ask if the abovetheorem can be proved in the more general context of free step two nilpotent Lie groups. For reasonswe just mentioned before the statementof the theorem, itis going to be very difficulttoprovesucharesultusingspectralmethods.Inprovingtheabovetheoremfor theHeisenberg group,wecombinetheideaofCowlingalongwitharecentlyformulated strategy of Lacey [13] in the Euclidean context that has turned out to be fruitful in

(4)

handlingseveral maximalfunctions.Webelievethatourproof canbe suitablyadapted tohandleatleastthecaseofH-typegroups,werestrainourselvesfromdoingsoinorder to keep theproofselegant. Weplanto takeupthegeneralcaseoffreesteptwo groups inafuturework.

As mentioned above, weestablish Theorem 1.2 by closelyfollowing Lacey [13]. The main idea of Lacey in reproving Calderon’s theorem on Rn is to establish a sparse dominationforthesphericalmeans.Inordertodoso,herequiredtwomainingredients:

(i) theLp improvingproperty and (ii) thecontinuity property,of thespherical means.

These ingredients are then used to controlthe sphericalmaximal functionin termsof certain dyadicmaximalfunctions.

Once asparsedominationforthelacunarysphericalmaximalfunctionisobtained,it is then a routinematter to deduce weightedandunweighted Lp bounds. Theorem 1.2, aswellascertainweightedversionsthatarestatedinSection5areeasyconsequencesof thesparseboundstatedinTheorem1.3,whichisthemainresultofthispaper.Inorder to statetheresultweneedto setupsomemorenotation,see[13].

As inthe caseof Rn, thereisanotionofdyadicgridsonHn,the membersofwhich are called (dyadic) cubes.A collection ofcubes S inHn is said to be η-sparse ifthere are sets {ES ⊂S : S ∈ S} which are pairwise disjoint and satisfy |ES| > η|S| for all S ∈ S.Forany cubeQand1< p<∞,wedefine

fQ,p:=

1

|Q|

Q

|f(x)|pdx 1/p

, fQ := 1

|Q|

Q

|f(x)|dx.

Intheabove,x= (z,t)∈Hnanddx=dzdtistheLebesguemeasureonCn×R,which, as wehavealreadymentioned,istheHaarmeasureontheHeisenberg group.Following Lacey [13],bytheterm(p,q)-sparseformwe meanthefollowing:

ΛS,p,q(f, g) =

S∈S

|S|fS,pgS,q.

Theorem 1.3. Assume n≥2 andfix 0< δ < 961. Let1< p,q < be suchthat (1p,1q) belong to the interior of the triangle joining the points (0,1),(1,0) and (2n+12n ,2n+12n ).

Then forany pairof compactly supportedbounded functions(f,g)there existsa (p,q)- sparse formsuchthat MHlacnf,g≤CΛS,p,q(f,g).

We remark thatas intheEuclidean case wecan takeany δ >0 inTheorem 1.3, in particularwecanchooseδ= 1/2.Inordertoprovethemainingredientsinourcase,we make use oftheideaof Cowlingalong withanalytic interpolation. Once wehavethese two ingredients in our hand, the method of Lacey can be adapted to the Heisenberg group settingto obtainsparse domination. This hasbeen alreadydone inajoint work of thesecondauthor [1] whereadifferentkindof sphericalmaximal functionisstudied ontheHeisenberg group.

(5)

Thesphericalmaximalfunctionmentionedinthepreviousparagraphis associatedto thesphericalmeanstakenovercomplexspheresSr,0={(z,0)Hn :|z|=r}whichwere initiatedintheworkofNevoandThangavelu.In[16],theyshowedthatthecorresponding maximalfunctionisboundedonLp(Hn) forp>2n2n12.LaterNarayanan-Thangaveluin [15] and independentlyMüller-Seeger in[14] improved thatresult andproved thatthe maximalfunctionisboundedonLp(Hn) ifandonlyifp> 2n−12n .Recently,Bagchietal.

[1] haveprovedtheanalogueofCalderon’stheoremfortheassociatedlacunaryspherical maximalfunctionbyobtainingasparseboundas inLacey[13].

Letμr stand forthe normalised surfacemeasure on Sr ={z Cn : |z| =r}⊂Cn whichcanbeconsideredasameasureonHn.Theassociatedsphericalmaximalfunction isthengivenbysupr>0|f∗μr(z,t)|.Eventhoughthemeasureμrismoresingularthanσr, itsgroupFouriertransformisexplicitlyknown,givenintermsofthesphericalfunctions associated to the action of the unitary group U(n) on Hn. These spherical functions are given by Laguerre functions for which very precise estimates are available in the literature. Thus the spectral method turns out to be useful in studying the maximal functionsupr>0|f∗μr(z,t)|ascanbeseenfromallthethreeworks[16],[15] and[1] (see also [21]). Having said this, we remark that it maybe interesting to see ifCalderon’s approach can be adapted to study the lacunary maximal function associated to the sphericalmeansf∗μr.In[1] theauthorswereinterestedinprovingsparseboundswhich immediately givesCalderon’s theorem as acorollary. Consequently, theydidnot make anyattempttoproveCalderon’stheoremusingspectralmethods.However,thespectral theoryofthesphericalmeanscannotbeavoidedcompletely.Eveninourcase,wewillsee thatinformation ontheFouriertransformofσrplays animportantroleinestablishing Lp improvingandcontinuitypropertiesofthesphericalmeansf∗σr.

Weconcludetheintroductionbybrieflydescribingtheplanofthepaper.Aftercollect- ingsomerelevantresultsfromtheharmonicanalysis onHeisenberggroupsinSection2 weestablishtheLp improvingpropertiesofthesphericalaveragesinSection3.InSec- tion 4 we study the continuity properties of the same. Finally inSection 5 we sketch theproofofthesparsedomination(i.e.proofofTheorem1.3)anddeduceweightedand unweightedinequalities.

2. Preliminaries

2.1. FouriertransformonHn

InthissectionwecollectsomebasicresultsfromtheharmonicanalysisonHeisenberg groups thatwill play important roles in the study of the sphericalmaximal function.

GeneralreferencesforthissectionareFolland[11] andThangavelu[23].TheHeisenberg group Hn introduced in the previous section is a nilpotent Lie group which is non- commutativeand yet with avery simplerepresentation theory. For eachnon zero real numberλwehaveaninfinitedimensionalrepresentationπλrealisedontheHilbertspace L2(Rn).These areexplicitlygivenby

(6)

πλ(z, t)ϕ(ξ) =eiλtei(x·ξ+12x·y)ϕ(ξ+y),

where z = x+iy and ϕ L2(Rn). These representations are known to be unitary and irreducible. Moreover, upto unitary equivalence these account for all the infinite dimensionalirreducibleunitaryrepresentationsofHn(see[11]).Asthefinitedimensional representations ofHn donotcontributetothePlancherel measurewewill notdescribe them here.

The Fourier transform of a function f L1(Hn) is the operator valued function obtainedbyintegratingf againstπλ:

fˆ(λ) =

Hn

f(z, t)πλ(z, t)dzdt.

Note that fˆ(λ) is a bounded linear operator on L2(Rn). It is known that when f L1∩L2(Hn) itsFouriertransformisactuallyaHilbert-Schmidtoperatorand onehas

Hn

|f(z, t)|2dzdt= (2π)−n−1

−∞

fˆ(λ)2HS|λ|ndλ.

The above allows us to extend the Fourier transform as a unitary operator between L2(Hn) andtheHilbertspaceofHilbert-SchmidtoperatorvaluedfunctionsonRwhich are squareintegrablewith respecttothePlancherelmeasure dμ(λ)= (2π)n1|λ|ndλ.

2.2. TheHeisenbergLie algebra

Welethn standfortheHeisenbergLiealgebraconsistingofleftinvariantvectorfields onHn.Abasisforhn isprovidedbythe2n+ 1 vectorfields

Xj =

∂xj

+1 2yj

∂t, Yj =

∂yj 1 2xj

∂t, j= 1,2, ..., n

and T = ∂t. These correspond to certain oneparameter subgroupsof Hn. Recall that given suchasubgroupΓ={γ(s):s∈R}oneassociatestheleft invariantvectorfield

Xf(g) = d ds

s=0f(gγ(s)).

Associated toeachsuchX wealsohavearight invariantvectorfieldX definedby Xf(g) = d

ds

s=0f(γ(s)g).

Itthenfollowsthatany(x,y,t)∈Hn canbewrittenas(x,y,t)= exp(x·X+y·Y+tT) whereX = (X1,....,Xn),Y = (Y1,....,Yn) andexp istheexponentialmaptakinghninto Hn.Fromtheabovedefinitionright invariantvectorfieldscanbeexplicitlycalculated

(7)

X˜j=

∂xj 1 2yj

∂t Y˜j=

∂yj +1 2xj

∂t;

theyagreewiththeleft invariantonesat theorigin.Therepresentationsπλ of Hn give riseto thederivedrepresentationsλoftheLie algebrahn.These aregivenby

λ(X)ϕ= d ds

s=0πλ(expsX)ϕ.

Forreasonablefunctionsf andanyright invariantvectorfieldX,itisknownthat πλ(Xf) =λ( ˜X)πλ(f)

whereλisthederivedrepresentationoftheHeisenbergliealgebracorrespondingtoπλ. Itisalsowell-knownthatλ(Xj)=iλξjandλ( ˜Yj)=∂ξ

j.NowwritingZ˜j = ˜Xj+iY˜j, Z˜j = ˜Xj−iY˜j andusingtheaboveresultswehave

πλ( ˜Zjf) =iAj(λ)πλ(f)and πλ( ˜Zjf) =iAj(λ)πλ(f) whereAj(λ) andAj(λ) aretheannihilationandcreationoperatorsgiven by

Aj(λ) =

∂ξj +iλξj

, Aj(λ) =

∂ξj +iλξj .

Wemake useof these relations intheproof of thecontinuityproperty of thespherical means,seeSection4.

2.3. The measureontheKoranyi sphere

Let SK = {(z,t)∈ Hn : |(z,t)| = 1}be the Koranyi sphere of radius 1. Then it is wellknownthatthereisaRadonmeasureσonKwhichgivesrisetothefollowingpolar decompositionoftheHaarmeasureontheHeisenberggroup:

Hn

f(x)dx= 0 SK

fry)dσ(y) rQ−1dr

whereQ= 2n+2 isknownasthehomogeneousdimensionofHn.Foranyr >0 wedefine themeasureσr=δrσandnote thatitis supportedonKr={(z,t)∈Hn:|(z,t)|=r}. WealsohaveanotherpolardecompositionoftheHaarmeasure givenby

Hn

f(z, t)dzdt=

−∞

0 |ω|=1

f(rω, t)dμ(ω)

r2n1drdt

(8)

where μ is the surface measure on the unit sphere in Cn. If we let μr stand for the surfacemeasureonthesphereSr={(z,0)Hn:|z|=r}andδtfortheDiracmeasure on R supportedat the point t then themeasure μr,t =μr∗δt is supportedonthe set Sr,t={(z,t)∈Hn:|z|=r}.Themeasureσrcanbeexpressedintermsofthemeasures μr,t asfollows(seeFaraut-Harzallah[9]):

σr= Γn+1

2

√πΓn

2

π/2

−π/2

μrcosθ,1

4r2sinθ (cosθ)n1dθ.

2.4. Fouriertransformsofradial measures

The unitary groupU(n) hasa naturalaction onHn given byk.(z,t)= (k.z,t),k∈ U(n) which inducesan actiononfunctionsand measures ontheHeisenberg group.We saythatafunctionf (measureμ)isradialifitisinvariantundertheactionofU(n).Itis wellknownthatthesubspaceofradialfunctionsinL1(Hn) formsacommutativeBanach algebraunderconvolution.Sois the spaceoffiniteradialmeasuresonHn.TheFourier transformsofsuchmeasuresarefunctionsoftheHermiteoperatorH(λ)=Δ+λ2|x|2.

Infact,ifH(λ)=

k=0(2k+n)|λ|Pk(λ) standsforthespectraldecompositionofthis operator,thenforaradialmeasure μwehave

ˆ μ(λ) =

k=0

Rk(λ, μ)Pk(λ).

More explicitly, Pk(λ) stands for the orthogonal projection of L2(Rn) onto the kth eigenspacespannedbyscaledHermitefunctionsΦλαfor|α|=k.ThecoefficientsRk(λ,μ) are explicitlygivenby

Rk(λ, μ) = k!(n−1)!

(k+n−1)!

Hn

eiλtϕλk(z)dμ(z, t).

Intheaboveformula,ϕλk are Laguerrefunctionsoftype(n1):

ϕλk(z) =Ln−1k (1

2|λ||z|2)e14|λ||z|2

whereLnk1 denotestheLaguerrepolynomialoftype(n1).Wereferthereaderto[22]

forthedefinitionandproperties.Inparticular,forthemeasuresσrwe have

Rk(λ, σr) = Γn+1

2

√πΓn

2

k!(n−1)!

(k+n−1)!

π/2

−π/2

ϕλk(r

cosθ)e14r2sinθ (cosθ)n1dθ.

(9)

Thoughtheaboveintegralcannotbeevaluatedinaclosedform,itcanbeusedtostudy themaximalfunctionassociated to thesphericalmeans f∗σr. Seetheworkof Fischer [10] wherethesphericalmaximalfunctioninaslightlygeneralcontexthasbeenstudied.

3. Lp -improving propertyofthesphericalmeans

In this section we prove certain Lp−Lq bounds for the spherical means operator Ar. In order to prove the required estimates we embed Ar into an analytic family of operators and then appeal to Stein’s analytic interpolation theorem. First we obtain the following representation of themeasure σr as asuperposition of certain operators which canbe handled easily. In whatfollows we let Pt(x) =cQ t (t2+|x|2)Q+12 and Iγ(x):=C(Q,γ)|x|−Q+iγ, x∈Hn,t>0,γ∈Rwhere cQ is definedbythecondition

cQ

Hn

(1 +|x|2)Q+12 dx= 1

and C(Q,γ) = cnΓQ

4

2

2

. In the proof of the next theorem which gives a representationofσtintermsofPtandIγ wemakeuseofthefollowingsimplelemma.

Lemma3.1. LetF(t)=cQ(1+e2t)Q+12 eQtandletF(γ)ˆ standsfortheEuclideanFourier transformofF.Then

F(γ) =ˆ ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

.

Proof. BythedefinitionoftheFouriertransform Fˆ(γ) = cQ

−∞

(1 +e2t)Q+12 eQte−itγdt

whichafterthechangeofvariableset=rleadsto

Fˆ(γ) =cQ

0

(1 +r2)Q+12 rQ−1−iγdr.

Another change of variables (1−t) = (1+r2)1 converts the above integralinto the Betaintegral

1 2 1 0

(1−t)1+iγ2 −1tQ2−1dt= 1 2

ΓQ

2

Γ1+iγ

2

ΓQ+1

2

.

(10)

Consequently weobtain

Fˆ(γ) = 1 2cQ

ΓQ−iγ

2

Γ1+iγ

2

ΓQ+1

2

.

Observethat,bythedefinitionofcQ wehave 1 =

Fˆ(0) = 1 2cQΓQ

2

Γ1

2

ΓQ+1

2

whichleadstotheconclusion

Fˆ(γ)= Γ

Q−iγ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

completingtheproof.

Thefollowingresultistheanalogueofatheorem byCowlingandMauceri[7] proved inthecontextofRn.WeprovidethedetailsintheHeisenbergsettingfortheconvenience of thereader. Wedefine anotherconstantd(Q,γ) bytherequirement

d(Q, γ)C(Q, γ) = 1ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

. (3.1)

Theorem 3.2.Fort>0thefollowingrepresentationholds inthesense of distributions:

σt=Pt+ 1 2π

−∞

d(Q, γ)t−iγIγ dγ.

Proof. Letu∈Cc(1−δ <|x|<1+δ).ThenbyusingpolardecompositionoftheHaar measure,

Hn

u(x)|x|Q+iγdx= 0

SK

u(δrω)r1dσ(ω)dr.

Bydefiningu(r)¯ =

SKu(δrω)dσ(ω) werewritetheaboveas

Hn

u(x)|x|−Q+iγdx= 0

¯

u(r)riγ−1dr

Butbyachangeofvariables wehave

0

¯

u(r)riγ−1dr=

−∞

¯

u(et)eiγtdt.

HencebytheFourierinversionformulaweobtain

(11)

−∞ Hn

u(x)|x|−Q+iγdx

= 2πu(1) = 2π¯ σ, u. (3.2)

Wenowconsiderthefollowing equation:

−∞

d(Q, γ)Iγdγ, u=

Hn

−∞

d(Q, γ)C(Q, γ)|x|−Q+iγ u(x)dx.

Nowchangingtheorderoftheintegrationand using(3.1) and(3.2) weget

−∞

d(Q, γ)Iγdγ, u= 2πσ, u −

−∞ Hn

ΓQ−iγ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

u(x)|x|−Q+iγdx

dγ.(3.3)

Now wesimplifythe second integralintheaboveequation. Using polardecomposition wehave

−∞

Hn

ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

u(x)|x|−Q+iγdxdγ

=

−∞

SK

0

ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

riγ−1u(δrω)drdσ(ω)dγ

=

−∞

SK

−∞

ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

eiγtu(δetω)dtdσ(ω)dγ.

ByFubini’stheorem,changingtheorderoftheintegrationweobtain

−∞

Hn

ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

u(x)|x|−Q+iγdxdγ

=

−∞

SK

−∞

ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

eiγt

u(δetω)dσ(ω)dt.

WenowmakeuseofLemma3.1andobtain

−∞

SK

−∞

ΓQ−iγ

2

Γ1+iγ

2

ΓQ

2

Γ1

2) eiγt

u(δetω)dσ(ω)dt

=

−∞

SK

−∞

F(γ)eˆ itγ

u(δetω)dσ(ω)dt

(12)

= (2π)

−∞

SK

F(t)u(δetω)dσ(ω)dt

= (2π)cQ

SK

0

(1 +r2)Q+12 u(δrω)rQ−1drdσ(ω).

Asthelastintegralintheabovechainofequationsisnothingbut(2π)

Hnu(x)P1(x)dx we haveproved

−∞

Hn

ΓQ−iγ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

u(x)|x|Q+iγdxdγ= (2π)P1, u. (3.4)

Combining (3.3) and (3.4) we obtainthefollowing equalitywhich holdsinthesense of distributions:

σ=P1+ (2π)−1

−∞

d(Q, γ)Iγdγ.

As σt isobtainedfrom σbydilation,thetheoremisproved.

Wewouldliketo embedthesphericalmeansAr intoananalyticfamilyofoperators.

As in theEuclidean case, this isachieved by observing thatthe distributionsgiven by thefunctions

φr,α(x) = 2rQ Γ(α)

1−|x|2

r2 α1

+ , (α)>0

converge to σr as α 0. In the Euclidean case the Fourier transform of φr,α(x) is known explicitly,given intermsof Bessel functions,which allowsimmediate extension asahomomorphicfamilyofdistributions.InthecaseoftheHeisenberggroupwedonot have ausefulformula for the(group) Fouriertransform ofφr,α.Hencewe make useof the following representation similar to the oneprovedfor σr inthe precedingtheorem inholomorphicallyextendingtheoperatorf∗φr,α.

Proposition 3.3. Letr > 0, Re(α) >0. Then for any Schwartz function f on Hn,we have

f ∗φr,α(x) = 2r−Q Γ(α)

r 0

1−t2

r2 α−1

tQ−1f∗Pt(x)dt

+ 1 2π

−∞

d(Q, γ)r Γ(Q−iγ2 )

Γ(α+Q−iγ2 )f∗Iγ(x)dγ.

(13)

Proof. Bydefinitionofconvolution onHeisenberggroupwehave f ∗φr,α(x) =

Hn

f(x.y1r,α(y)dy.

Asφr,αis radial,integratinginpolarcoordinateswe get

f ∗φr,α(x) =2r−Q Γ(α)

0 SK

f(x.δtω1) 1−t2

r2 α−1

+ dσ(ω) tQ1dt

=2r−Q Γ(α)

r 0

1 t2 r2

α1

tQ1f∗σt(x)dt.

Makinguseoftherepresentation

f ∗σt=f ∗Pt+ 1 2π

−∞

d(Q, γ)t−iγf ∗Iγ

provedintheprevioustheoremwegetf∗φr,α=Sr,αf+Tr,αf where

Sr,αf(x) = 2rQ Γ(α)

r 0

1−t2

r2 α1

tQ1f∗Pt(x)dt

and

Tr,αf(x) = 1 2π

−∞

2r−Q

Γ(α) r 0

1 t2

r2 α−1

tQ−1t−iγdt

d(Q, γ)f∗Iγ(x)dγ.

Theinnerintegralcanbe explicitlycalculated:

r−Q r 0

1−t2 r2

α−1

tQ−1t−iγdt=r−iγ 1 0

(1−t2)α−1tQ−1−iγdt

whichreducesto abetaintegraland yields

2r−Q Γ(α)

r 0

1 t2

r2 α−1

tQ1tdt= Γ(α)Γ(Q−iγ2 ) Γ(α+Q−iγ2 ). Consequently,weobtaintherepresentation

(14)

Tr,αf := 1 2π

−∞

d(Q, γ)r−iγ Γ(Q2)

Γ(α+Q2)f∗Iγ(x)dγ, proving thetheorem.

IfwedefineAr,αf =f∗φr,α,thenbytheabovepropositionwehaveAr,αf =Sr,αf+ Tr,αf where theaboveholds undertheassumption that(α) >0.But both Sr,α and Tr,α have analytic continuationto a largerdomain of α. Indeed, Tr,α canbe extended to thewholeofC asanentire functionandSr,α extendsholomorphicallytotheregion (α) > −n. Thus Ar,α is an analytic family of operators and when α goes to 0 we recover f ∗σr. Weremarkthatthe Lp-improvingproperty ofthis generalisedspherical mean Ar,αf ontheEuclideanspacehasbeenstudiedbyStrichartz[20].

In order to study the Lp improving property of the spherical mean value operator f →f∗σrweuseanalyticinterpolation.ItisenoughtoproveanLp-improvingproperty fortheoperatorTr,0 bystudyingthefamilyTr,α.Weshallshowthatforα= 1+iβ,the operatorTr,αisboundedfromL1+δ toLforanyδ >0 and forsomenegativevalueof (α),itisboundedonL2(Hn).Byadilationargument,wecanassumethatr= 1 and hence we deal with Tα :=T1,α. To handle theL2 boundedness, we need the following Fouriertransformcomputation.

Proposition 3.4.For λ= 0, theHeisenberg group Fouriertransform of the distribution

|.|−Q+iγ isgiven by

|.|Q+iγ(λ) = (2π)n+1|λ|iγ/2 Γ(2) Γ(Q4 4)2

k=0

Γ2k+n

2 +2−iγ4 Γ2k+n

2 +2+iγ4 Pk(λ).

This has been proved in the work of Cowling and Haagerup [6]. From the above propositionitisnow easytoprovethefollowing:

Proposition 3.5.Assumethat n≥1.Thenforanyα∈C with Re(α)>−n+12 wehave Tαf2≤C((α))f2

where C((α))has admissiblegrowth.

Proof. Notethatifwewrite a(Q,γ):=d(Q,γ)C(Q,γ) wehave

Tαf(x) =

−∞

a(Q, γ)r−iγ Γ(Q−iγ2 )

Γ(α+Q2)f∗ |.|−Q+iγ(x)dγ.

It isthereforeenoughtoshowthat

(15)

−∞

|a(Q, γ)| |Γ(Q2)|

|Γ(α+Q2)|b(Q, γ)dγ≤C((α))

whereb(Q,γ) isthenormoftheoperatorf →f∗ |· |−Q+iγ onL2(Hn) so thatwehave theinequality

f ∗ | · |Q+iγ2≤b(Q, γ)f2.

InviewofPlanchereltheoremforthegroupFouriertransformonHnwehavetheestimate b(Q, γ)≤Csup

λ |.|Q+iγ(λ). Usingthecomputationinthepreviousproposition,we have

|.|Q+iγ(λ) ≤C |Γ(2)|

|Γ(Q4 4)|2sup

k

|Γ2k+n

2 +2−iγ4

|

|Γ2k+n

2 +2+iγ4

| =C |Γ(2)|

|Γ(Q4 4)|2. Thusweonlyneedtoshowthat

−∞

|a(Q, γ)| |Γ(Q2)|

|Γ(α+Q−iγ2 )|

|Γ(2)|

|Γ(Q4 4)|2 dγ≤C((α)).

Inordertoprovetheabove,wefirstrecallthat a(Q, γ) =

1ΓQ

2

Γ1+iγ

2

ΓQ

2

Γ1

2

andhencea(Q,γ) hasazeroat γ= 0.Consequently, 1

−1

|a(Q, γ)|

|γ|

|Γ(Q−iγ2 )|

|Γ(α+Q−iγ2 )|

|Γ(1 +2)|

|Γ(Q4 4)|2 dγ≤C1((α))

aslongas(α)>−n−1.Toprovetheintegrabilityawayfromtheoriginwemakeuse ofthefollowingasymptoticformulaforthegammafunction:for|ν|large

Γ(μ+iν)∼√

|ν|μ−1/2e12π|ν|. Sousingthisformula,asimplecalculationshows thatfor|γ|≥1

|a(Q, γ)|

|γ|

|Γ(Q−iγ2 )|

|Γ(α+Q−iγ2 )|

|Γ(1 +2)|

|Γ(Q4 4)|2 ≤C2((α))|γ|(α)n1/2.

(16)

Therefore, itfollowsthat

|γ|≥1

|a(Q, γ)|

|γ|

|Γ(Q2)|

|Γ(α+Q2)|

|Γ(1 +2)|

|Γ(Q4 4)|2 dγ≤C2((α)) forall(α)>−n+ 1/2.Thiscompletes theproof oftheproposition.

Proposition 3.6. Foranyβ R andp>1we have, T1+iβf≤C(β)fp.

Proof. For any p > 1, to prove Lp L estimate, first note that in view of the Proposition3.3, foranyβ∈R wehave

T1+iβf(x) =f ∗φ1,1+iβ(x) 1 Γ(1 +iβ)

1 0

1−t2

tQ1f ∗Pt(x)dt. (3.5)

Soforany x∈Hn wehave

|T1+iβf(x)| ≤ |f ∗φ1,1+iβ(x)|+ 1

|Γ(1 +iβ)| 1 0

tQ−1|f∗Pt(x)|dt. (3.6)

Now seethat

|f∗φ1,1+iβ(x)| ≤ 1

|Γ(1 +iβ)||f| ∗χB1(x)≤C(β)fp. As wehavePt(x)=t−QP1t−1x) itfollows thatforanyp>1,

|f∗Pt(x)| ≤tQfp Hn

P1t1x)pdx1/p

≤CtQ/pfp.

Consequently, the integral in (1.2) is bounded by fp. Finally, these two estimates together with(3.6) weget

T1+iβf≤C(β)fp.

Byusingtheabovetwopropositionsandananalyticinterpolationargument,wenow provethefollowingresult.

Proposition 3.7.For any 0 < δ < 1, we have T0 : Lpδ(Hn) Lqδ(Hn) where pδ = (1+δ)2n+1−δ2n andqδ = (2n+ 1−δ).

(17)

Fig. 1.TriangleLn,ontheleftside,showstheregionforLpLqestimatesforA1.ThedualtriangleLnis ontheright.

Proof. Givenδ >0 weconsidertheholomorphicfamilyofoperatorsTL(z),whereL(z)= (−n+1+δ2 )(1−z)+z.InviewofthePropositions3.5and3.6,Stein’sinterpolationtheorem gives

TL(u):Lp(u)(Hn)→Lq(u)(Hn)

where p(u)1 = 1−u2 +1+δu and q(u)1 = 12(1−u). SolvingforL(u)= 0 weget u= 2n−1−δ2n+1δ andsimplifyingwegetp(u)=pδ = (1+δ)2n+1−δ2n andq(u)=qδ = (2n+ 1−δ).

The following result which follows from the above end point estimates by means of analytic interpolation describes the Lp improving properties of the spherical mean operatorAr.

Theorem3.8. Assumethat n≥1.Thenwehave

Arfq≤CrQ(1q1p)fp

whenever (1p,1q) lies in the interior of the triangle joining the points (0,0),(1,1), and (2n+12n ,2n+11 )aswellasthestraightlinejoining thepoints(0,0),(1,1).

Proof. An easy calculation shows that δ−1r A1δr = Ar and hence we can assume that r= 1.Withpδ andqδ asintheproofofTheorem3.7,wefirstshowthat

Ar:Lpδ(Hn)→Lqδ(Hn). (3.7) RecallthatfromtheProposition3.3wehave

References

Related documents

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

But as cuttlefish, which also h a s almost the same fishing season here as balistids, began to gain export demand since early eighties, the fishermen began to neglect balistids

Bamber (1917) recorded a singje specimen with secondary sex characters of male, testis on the left side, ovo-testis on the right side, right and left oviducts and male ducts,

Six leptocephali, belonging to various genera, were collected from the shore seines of Kovalam beach (7 miles south of Trivandrum) in the month of January 1953. Of these 2

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

Angola Benin Burkina Faso Burundi Central African Republic Chad Comoros Democratic Republic of the Congo Djibouti Eritrea Ethiopia Gambia Guinea Guinea-Bissau Haiti Lesotho

Daystar Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21.. Re-use and distribution is strictly not permitted, except for Open

The matter has been reviewed by Pension Division and keeping in line with RBI instructions, it has been decided that all field offices may send the monthly BRS to banks in such a