Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton–proton collisions at √
s = 13 TeV
.The CMS Collaboration
CERN,Switzerland
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received13October2017
Receivedinrevisedform23March2018 Accepted29March2018
Availableonline4April2018 Editor: M.Doser
Keywords:
CMS Physics Extradimensions Graviton Radion
di-Higgsbosonresonance
AsearchforamassiveresonancedecayingintoapairofstandardmodelHiggsbosons,inafinalstate consisting of two b quark–antiquark pairs, is performed. A data sample of proton–proton collisions at acentre-of-massenergy of13 TeV isused, collectedby the CMSexperiment atthe CERN LHCin 2016,andcorrespondingtoanintegratedluminosityof35.9 fb−1.TheHiggsbosonsarehighlyLorentz- boosted andare eachreconstructedasasinglelarge-areajet. Thesignalischaracterizedbyapeakin thedijetinvariantmassdistribution,aboveabackgroundfromthestandardmodelmultijetproduction.
Theobservationsareconsistentwiththebackgroundexpectations,andareinterpretedasupperlimitson theproductsofthes-channelproductioncrosssectionsandbranchingfractionsofnarrowbulkgravitons andradionsinwarpedextra-dimensionalmodels.Thelimitsrangefrom126to1.4 fb at95%confidence levelforresonanceswithmassesbetween750and3000 GeV,andarethemoststringenttodate,over theexploredmassrange.
©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
In the standard model (SM), the pair production of Higgs bosons(H) [1–3] inproton–proton(pp) collisionsat√
s=13 TeV isarareprocess [4].However,theexistenceofmassiveresonances decaying to Higgs boson pairs (HH) in many new physics mod- els mayenhancethisrateto a levelobservable attheCERN LHC using the current data. For instance, models with warped extra dimensions(WED) [5] containnewparticlessuchasthespin-0ra- dion [6–8] andthespin-2firstKaluza–Klein(KK)excitationofthe graviton [9–11],whichhavesizeablebranchingfractionstoHH.
TheWEDmodelshaveanextraspatialdimensioncompactified between two branes, with the region between (called the bulk) warpedviaanexponentialmetric
κ
l,κ
beingthewarpfactorand l thecoordinateof theextra spatial dimension [12]. The reduced Planck scale (MPl≡MPl/8π
, MPl beingthe Planck scale) is con- sideredafundamentalscale.Thefreeparametersofthemodelareκ
/MPlandtheultravioletcutoffofthetheoryR≡√6e−κlMPl[6].
In pp collisionsatthe LHC,the graviton andthe radionare pro- ducedprimarilythrough gluon–gluon fusionandarepredictedto decaytoHH [13].
Other scenarios, such as the two-Higgs doublet models [14]
(in particular, the minimal supersymmetric model [15]) andthe
E-mailaddress:cms-publication-committee-chair@cern.ch.
Georgi–Machacek model [16] predict spin-0 resonances that are produced primarily through gluon–gluon fusion, anddecay toan HH pair.TheseparticleshavethesameLorentzstructureandeffec- tive couplingstothe gluonsand, fornarrowwidths,resultinthe samekinematicdistributions asthoseforthebulk radion.Hence, theresultsofthispaperarealsoapplicabletothisclassofmodels.
Searches for a new particle X in the HH decay channel have beenperformedby theATLAS [17–19] andCMS [20–24] Collabo- rations inpp collisions at √
s=7 and8 TeV. More recently, the ATLAS Collaboration haspublished limitson the production of a KKbulkgraviton,decayingtoHH,inthebbbb finalstate,usingpp collisiondataat√
s=13 TeV,correspondingtoanintegratedlumi- nosityof3.2 fb−1[25].Becausethelongitudinalcomponentsofthe W and Z bosonscoupletotheHiggsfieldintheSM, aresonance decaying to HH potentially also decays intoWW and ZZ, with a comparablebranching fraction forX→ZZ, andwitha branching fractionforX→WW thatistwiceaslarge.SearchesforX→WW andZZ havebeenperformedbyATLASandCMS [26–35].
This letter reportson the search for a massive resonance de- caying to an HH pair, in the bbbb final state (with a branching fraction≈33% [36]),performedusinga datasetcorresponding to 35.9 fb−1 ofpp collisionsat√
s=13 TeV.Thesearch significantly improves upon the CMS analysis performed using the LHC data collectedat√
s=8 TeV [24],andextendsthesearchedmassrange to 750–3000 GeV. This search is conducted for both the radion https://doi.org/10.1016/j.physletb.2018.03.084
0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
andthe graviton, whereas the earliersearch only considered the former.
In this search, the X→HH decay would result in highly Lorentz-boostedandcollimated decayproductsofH→bb,which are referred to asH jets. These are reconstructed using jet sub- structure and jet flavour-tagging techniques [37–39]. The back- ground consists mostly of SM multijet events, and is estimated using several control regions defined in the phase space of the massesandflavour-tagging discriminatorsof the two H jets, and the HH dijet invariant mass,allowing thebackground to be pre- dicted over the entire range of mX explored. The signal would appearasa peak inthe HH dijet invariant massspectrum above asmoothbackgrounddistribution.
2. TheCMSdetectorandeventsimulations
TheCMSdetectorwithits coordinatesystemandtherelevant kinematic variables is described in Ref. [40]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m in- ternal diameter, providing a magnetic field of 3.8 T. Within the field volume are siliconpixel andstrip trackers, alead tungstate crystalelectromagneticcalorimeter (ECAL), anda brass andscin- tillatorhadroncalorimeter(HCAL),eachcomposed ofabarreland twoendcapsections.The trackercoversa pseudorapidity
η
range from−2.5 to 2.5 withthe ECAL andthe HCAL extending up to|
η
|=3. Forward calorimeters in the region up to |η
|=5 pro- vide almost hermetic detector coverage. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outsidethesolenoid,coveringaregionof|η
|<2.4.Events ofinterest are selected usinga two-tieredtrigger sys- tem [41].The firstlevel(L1),composed ofcustom hardwarepro- cessors,uses informationfromthe calorimetersandmuon detec- torstoselecteventsatarateofaround100 kHz.Thesecondlevel, knownas thehigh-level trigger (HLT), consistsofa farm of pro- cessorsrunningaversionofthefulleventreconstructionsoftware optimizedforfastprocessing,andreducestheeventratetoaround 1 kHz beforedata storage.Eventsare selectedatthe triggerlevel bythepresenceofjetsofparticlesinthedetector.TheL1trigger algorithmsreconstructjetsfromenergydeposits inthecalorime- ters. At the HLT, physics objects (charged and neutral hadrons, electrons,muons,andphotons)arereconstructedusingaparticle- flow(PF)algorithm [42].The anti-kT algorithm [43,44] isusedto clustertheseobjectswithadistanceparameterof0.8(AK8jets)or 0.4(AK4jets).
Bulkgravitonandradionsignaleventsaresimulatedatleading orderusing theMadGraph5_amc@nlo 2.3.3 [45] eventgenerator formassesintherange750–3000 GeV andwidthsof1 MeV (nar- row width approximation). The NNPDF3.0 leading order parton distribution functions (PDFs) [46], taken from the LHAPDF6 PDF set [47–50], withthefour-flavour scheme,isused.Theshowering andhadronizationofpartonsissimulatedwithpythia8.212 [51].
Theherwig++ 2.7.1 [52] generatorisusedforanalternativemodel toevaluatethesystematicuncertaintyassociatedwiththeparton showerandhadronization.The tuneCUETP8M1-NNPDF2.3LO [53]
is used forpythia 8, while the EE5C tune [54] is used forher- wig++.
Thebackgroundismodelledentirelyfromdata.However,sim- ulatedbackground samplesare used to develop and validate the background estimation techniques, prior to being applied to the data.These are multijetevents, generated atleading order using MadGraph5_amc@nlo,andtt+jets, generatedatnext-to-leading orderusingpowheg2.0 [55–57].Boththesebackgroundsareinter- facedtopythia8forsimulatingthepartonshowerandhadroniza- tion.Studiesusingsimulations establishedthat themultijetcom-
ponentismorethan99%ofthebackground,withtherestmostly fromtt+jets production.
AllgeneratedsampleswereprocessedthroughaGeant4-based [58,59] simulationoftheCMSdetector.Multiplepp collisionsmay occur in the same oradjacent LHC bunch crossings(pileup) and contribute totheoveralleventactivityinthedetector.Thiseffect isincludedinthesimulations,andthesamplesarereweightedto matchthenumberofpp interactionsobservedinthedata,assum- ingatotalinelasticpp collisioncrosssectionof69.2 mb [60].
3. Eventselection
Events were collected using several HLT algorithms. The first required the scalar pT sumof all AK4 jetsin the event (HT) to be greaterthan800or900 GeV,depending ontheLHCbeamin- stantaneous luminosity. A second trigger criterion required HT≥ 650 GeV, with a pair of AK4 jets with invariant mass above 900 GeV and a pseudorapidityseparation |
η
|<1.5.A third set oftriggers selectedeventswiththescalar pT sumofallAK8jets greaterthan650or700 GeV andthepresenceofan AK8jetwith a “trimmedmass”above50 GeV,i.e.thejet massafterremoving remnants ofsoftradiationusingjet trimmingtechnique [61].The fourthtriggering condition wasbased onthe presenceofan AK8 jet with pT>360 GeV and trimmed mass greater than 30 GeV.Thelast triggerselection acceptedeventscontainingtwoAK8jets having pT>280 and200 GeV with atleast onehaving trimmed massgreaterthan30 GeV,togetherwithanAK4jetpassingaloose b-taggingcriterion.
The pp interaction vertex with the highest
p2T of the as- sociated clusters of physics objects is considered to be the one associatedwiththehardscatteringinteraction,theprimaryvertex.
Thephysicsobjectsarethejets,clusteredusingthejetfindingal- gorithm [43,44] withthe tracksassigned tothe vertexasinputs, and the associated missing transverse momentum, taken as the negative vectorsumofthe pT ofthosejets. Theotherinteraction verticesaredesignatedaspileupvertices.
Tomitigatetheeffectofpileup,particles areassignedweights usingthepileupper particleidentification(PUPPI)algorithm [62], withtheweightcorrespondingtoitsestimatedprobabilitytoorig- inatefromapileupinteraction.Chargedparticlesfrompileupver- ticesreceiveaweightofzerowhilethosefromtheprimaryvertex receiveaweightofone.Neutralparticlesareassignedaweightbe- tweenzeroandone,withhighervaluesforthoselikelytooriginate fromtheprimaryvertex.ParticlesarethenclusteredintoAK8jets.
Thevectorsumoftheweightedmomentaofallparticlesclustered inthejetistakentobethejetmomentum.Toaccount fordetec- tor response nonlinearity,jet energy correctionsare applied as a functionofjet
η
andpT[63,64].Ineachevent,theleadingandthe subleadingpTAK8jets,j1 andj2,respectively,arerequiredtohave pT>300 GeV and|η
|<2.4.Theremovalofeventscontainingisolatedleptons(electronsor muons) with pT>20 GeV and|
η
|<2.4 helps suppresstt+jets anddibosonbackgrounds.The isolationvariableis definedasthe scalar pT sum of the charged and neutral hadrons, and photons in a cone of R=0.3 for an electron or R=0.4 fora muon, whereR≡(
η
)2+(φ)2,φbeingtheazimuthal angleinra- dians.Theenergyfrompileupdepositedintheisolationcone,and the pT oftheleptonitself,is subtracted [65,66].The isolation re- quirementremovesjetsmisidentifiedasleptons.Additionalquality criteria are applied to improve the purity of the isolated lepton samples.Electronspassingcombinedisolation andquality criteria correspondingtoaselectionefficiencyof90%(70%)aredesignated“loose” (“medium”)electrons.Forthe “loose”(“medium”)muons, the totalassociated efficiencyis 100% (95%).The probability ofa jet to be misidentified as an electron ora muon is in the range
0.5–2%,dependingonpT,
η
,andthechoiceofmediumorloosese- lectioncriteria.Eventscontainingonemediumlepton,ortwoloose leptonsofthesameflavour,butofoppositecharge,arerejected.The H→bb systemis reconstructed as a single high-pT AK8 jet, where the decay products have merged within the jet, and thetwohighest pT jetsintheeventare assumedtobe theHiggs boson candidates. The jet is groomed [67] to remove soft and wide-angle radiation using the soft-drop algorithm [68,69], with the soft radiationfraction parameter z set to 0.1 andthe angu- lar exponent parameter β set to 0. The groomed jet is used to compute thesoft-drop jet mass,which peaksatthe Higgsboson massforsignaleventsandreducesthemassofbackgroundquark- andgluon-initiatedjets. Dedicated mass corrections [70], derived fromsimulationanddatainaregionenrichedwithtt eventswith merged W→qq decays, are applied to the jet mass inorder to remove residual dependenceon thejet pT,andto matchthe jet massscaleandresolutionobservedindata.
Thesoft-dropmassesofj1 andj2arerequiredtobewithinthe range105–135 GeV, withan efficiency ofabout 60–70%,for jets arisingfromasignal ofmassmX intherange750–3000 GeV.The
“N-subjettiness”algorithmisusedtodeterminetheconsistencyof the jet with two subjets froma two-pronged H→bb decay, by computing the inclusive jet shape variables
τ
1 andτ
2 [71]. The ratioτ
21≡τ
2/τ
1 witha valuemuch lessthan oneindicates ajet with two subjets. The selectionτ
21<0.55 is used, having a jet pT-dependentefficiencyof 50–70%,beforeapplying thesoft-drop massrequirement.For background events, j1 and j2 are often well separated in
η
,especiallyathighinvariant mass(mjj)ofj1 andj2.Incontrast, signaleventsthatcontain aheavyresonancedecayingtotwo en- ergetic H jets are characterized bya small separationofthe two jetsinη
. Events are thereforerequired to havea pseudorapidity separation|η
(j1,j2)|<1.3.Theefficiencyofthetriggercombinationismeasuredinasam- ple of multijet events, collected with a control trigger requiring a single AK4 jet with pT>260 GeV, and with the leading and the subleading pT AK8 jets, j1 and j2, respectively, passing the above selectionson pT,
η
,andthesoft-drop mass.The efficiency isgreater than99% formjj≥1100 GeV,andintherange40–99%for750<mjj<1100 GeV.The triggerefficiencyofthe simulated samplesiscorrectedusingascalefactortomatchtheobservedef- ficiencyin the data. This scale factor isapplied asa function of
|
η
(j1,j2)|becauseithasamilddependenceonthisvariable.Themainmethodtosuppressthemultijetbackgroundisb tag- ging: sincea true H→bb jet contains two b hadrons, the H jet candidatesareidentifiedusingthededicated“double-b tagger”al- gorithm [72]. The double-b tagger exploits the presence of two hadronized b quarks inside the H jet, anduses variables related tob hadronlifetimeandmass todistinguishbetweenH jets and thebackgroundfrommultijetproduction;italsoexploitsthefact thattheb hadronflightdirectionsarestronglycorrelatedwiththe axesusedtocalculatetheN-subjettinessobservables.Thedouble-b tagger is a multivariate discriminator with output between −1 and 1, with a higher value indicating a greater probability for the jet to contain a bb pair. The double-b tagger discriminator thresholds of 0.3 and 0.8 correspond to H jet tagging efficien- ciesof 80and 30%and are referred toas “loose”(L) and“tight”
(T)requirements, respectively. Events musthave the two leading pT AK8jetssatisfyingtheloosedouble-b taggerrequirement.The data-to-simulationscale factor forthe double-b tagger efficiency ismeasured inan eventsample enriched in bb pairsfromgluon splitting [72],andappliedtothesignalstoobtainthecorrectsig- nalyields.
The main variable used in the search for a HH resonance is the “reduced dijet invariant mass” mjj,red≡mjj−(mj1 −mH)−
Fig. 1.Thesoft-dropmass(upper),theN-subjettinessτ21(middle),andthedouble-b taggerdiscriminator (lower) distributions ofthe selectedAK8 jets.The multijet backgroundcomponentsfor thedifferentjet flavoursareshown:jetshavingtwo Bhadrons(bb)orasingleone(b),jetshavingacharmhadron(c),andallother jets(light).Alsoplottedarethedistributionsforthesimulatedbulkgravitonand radionsignalsofmasses1400and2500 GeV.Thenumberofsignalandbackground eventscorrespondtoanintegratedluminosityof35.9 fb−1.Asignalcrosssection σ(pp→X→HH→bbbb)=20 pb isassumedforallthe masshypotheses.The eventsarerequiredtohavepassedthetriggerselection,leptonrejection,theAK8 jet kinematicselectionspT>300 GeV and|η|<2.4,and |η(j1,j2)|<1.3.The reduceddijetinvariantmassmjj,redisrequiredtobegreaterthan750 GeV.TheN- subjettinessrequirementofτ21<0.55 isappliedtotheupperandlowerfigures.
Thesoft-dropmassesofthetwojetsarebetween105–135 GeV forthemiddleand lowerfigures.
(mj2−mH), where mj1 and mj2 are the soft-drop masses of the leading and subleading H-tagged jets in the event, and mH= 125.09 GeV [73,74] is theHiggs bosonmass.The quantity mjj,red is usedratherthanmjj sinceby subtractingthe soft-dropmasses of thetwo H-tagged jetsandaddingback the exactHiggs boson massmH,fluctuationsinmj1 andmj2 duetothejet massresolu-
Fig. 2.Thejetseparation|η(j1,j2)|(left)andthereduceddijetinvariantmassmjj,red(right)distributions.Themultijetbackgroundcomponentsforthedifferentjetflavours areshown:eventscontainingatleastonejetwithtwoBhadrons(bb)orasingleone(b),eventscontainingajethavingacharmhadron(c),andallotherevents(light).Also plottedarethedistributionsforthesimulatedbulkgravitonandradionsignalsofmasses1400and2500 GeV.Thenumbersofsignalandbackgroundeventscorrespondto anintegratedluminosityof35.9 fb−1.Thesignalcrosssectionσ(pp→X→HH→bbbb)isassumedtobe20 pb forallthemasshypotheses.Theeventsarerequiredtohave passedtheonlineselection,leptonrejection,theAK8jetkinematicselectionspT>300 GeV,|η|<2.4.Thesoft-dropmassesofthetwojetsarebetween105and135 GeV, andtheN-subjettinessrequirementofτ21<0.55 andmjj,red>750 GeV areapplied.Themjj,reddistributions(right)require|η(j1,j2)|<1.3.
tionarecorrected,leadingto8–10%improvementinthedijetmass resolution.Arequirementofmjj,red>750 GeV isappliedforselect- ingsignal-likeevents.
Thesoft-dropmass,
τ
21,anddouble-b taggerdiscriminatordis- tributionsofthetwo leading pT jetsare showninFig.1 forsim- ulatedevents after passing the onlineselection, lepton rejection, kinematicselection, andthe requirementmjj,red>750 GeV. Also, the N-subjettiness requirement ofτ
21<0.55 is applied for the soft-drop mass and the double-b tagger distributions, while the soft-drop mass requirement is applied to theτ
21, and double-b taggerdiscriminator distributions. Sincesome ofthe triggers im- poseatrimmedjetmassrequirement,thisaffectstheshapeofthe offlinesoft-dropjetmass,resultinginasteepriseabove∼20 GeV.The distributions of the |
η
(j1,j2)| and the mjj,red variables are showninFig.2.Inthesefigures,themultijetbackgroundisshown fordifferentjet flavourcategories:jetshavingtwoBhadrons(bb) orasingle one (b),jetshavingacharm hadron(c),andall other jets(light).Thedouble-b taggerdiscriminator ofthetwo leadingAK8jets mustexceed the loosethreshold. In addition,if both discrimina- torvaluesalsoexceedthetightthreshold,eventsareclassifiedin the“TT”category. Otherwise,they are classifiedin the“LL” cate- gory,which contains events withboth j1 andj2 failingthe tight thresholdaswell aseventswitheitherj1 orj2 passingthe tight thresholdwhiletheotherpassestheloosethresholdonly.
The backgrounds are estimated separately for each category, andthecombinationofthelikelihoodsfortheTTandLLcategories givestheoptimalsignalsensitivityoverawiderangeofresonance masses,accordingtostudiesperformedusingsimulatedsignaland multijetsamples.TheTTcategoryhasagoodbackgroundrejection formX up to 2000 GeV. At higher resonance masses, where the backgroundissmall, theLLcategory providesbetter signalsensi- tivity. The full event selection efficiencies forbulk gravitons and radionsofdifferentassumedmassesare showninFig. 3. Thera- dion has a smaller efficiency than the bulk graviton because its
|
η
(j1,j2)| distributionis considerablywider than that ofa bulk gravitonofthesamemass,asshowninFig.2(left).4. Signalandbackgroundmodelling
Themethodchosen forthebackgroundmodellingdependson whethertheresonancemassmXisbeloworabove1200 GeV,since atlow masses thebackground doesnot fall smoothly as a func-
Fig. 3.Thesignalselectionefficienciesforthebulkgravitonandradionmodelsfor differentmasshypothesesoftheresonances,shownfortheLLandtheTTsignal eventcategories.Owingtothelargesamplesizesofthesimulatedevents,thesta- tisticaluncertaintiesaresmall.
tion of mjj,red, because of the trigger requirements, while above 1200 GeV it does. The background estimation relies on a set of control regions to predict the total background shape and nor- malization in the signal regions. The entire range of the mjj,red distributionabove750 GeV isusedfortheprediction.
For signals with mX≥1200 GeV, the underlying background distribution falls monotonically with mjj,red, thus allowing the background shape to be modelled by a smooth function, above which alocalized signal issearched for.This smooth background modellinghelpstoreduceuncertaintiesinthebackgroundestima- tionfromlocalstatisticalfluctuationsinmjj,red,therebyimproving the signal search sensitivity. The parameters of the function and itstotalnormalizationareconstrainedbyasimultaneousfitofthe signal andbackgroundmodelsto thedatain thecontrol andthe signalregions.FormX≥1200 GeV,themjj,reddistributionsforthe signalaremodelledusingthesumofaGaussianandaCrystalBall function [75],asshowninFig.4foronesignalcategory.Thesame modellingisusedfortheothersignalcategories,withdifferentpa- rametersfortheGaussianandtheCrystalBallfunctions.
Thesignalandcontrolregionsaredefinedbytwovariablesre- latedtotheleading pTjetj1:(i)itssoft-dropmassmj1 and(ii)the valueofthediscriminatorofthedouble-b tagger.Thebackground
Fig. 4.Thebulkgravitonsignalmjj,reddistributionfortheLLcategory,modelledus- ingthesumofGaussianandCrystalBallfunctions.Thismodellingisperformedfor signalsintherange1100<mjj,red<3000 GeV,wherethebackgrounddistribution fallssmoothly.Noeventsareobservedwithmjj,redgreaterthan3000 GeV.
Table 1
Definitionofthesignal,the antitag,andthesidebandregionsusedfortheback- groundestimation.Theregionsaredefinedintermsofthesoft-dropmassesofthe leadingpT(j1)andthesubleadingpT(j2)AK8jets,andtheirdouble-btaggerdis- criminatorvalues.
Event category Jet Soft-drop mass (GeV) Double-b tagger discriminator Signal (LL) j1
105–135
>0.3, but
j2 not both>0.8
Signal (TT) j1
>0.8 j2
Antitag (LL) j1
105–135
<0.3
j2 0.3–0.8
Antitag (TT) j1 <0.3
j2 >0.8
Sideband j1 <105 or>135 >0.3, but
(LL, passing) j2 105–135 not both>0.8
Sideband j1 <105 or>135
>0.8 (TT, passing) j2 105–135
Sideband j1 <105 or>135 <0.3
(LL, failing) j2 105–135 0.3–0.8
Sideband j1 <105 or>135 <0.3
(TT, failing) j2 105–135 >0.8
is estimatedin bins of the mjj,red distribution. Considering these twovariables,severalregionsaredefined.
The pre-tag region includes events fulfilling the selection re- quirements inSections 2–3 apart fromthose on mj1 andon the j1 double-b tagger discriminator. The signal region is the subset of pre-tag events where mj1 is inside the H jet mass window of 105–135 GeV, and with the j1 double-b tagger discriminator greaterthan0.3or0.8,fortheLLandTTregions,respectively.The antitagregionsrequirethej1 double-b taggerdiscriminatortobe lessthan0.3, withtherequirementonj2 beingthesameasthat for the corresponding LL or TT signal regions. The mj1 sideband regionconsistsofeventsinthepre-tagregion,wheremj1 liesout- side theH jetmass window.Based onwhetherj1 passesorfails thedouble-b tagger discriminator threshold,the sidebandregion is divided into either “passing”or “failing”, respectively. The an- titagregionsare dominatedby themultijetbackground,andhave identicalkinematicdistributionstothemultijetbackgroundevents in the signal region, according to studies using simulations. The definitionsofthesignal,theantitag,andthesidebandregionsare giveninTable1.
Intheabsence ofacorrelation betweenmj1 andthe double-b tagger discriminator values, one could measure in the mj1 side- band the ratio of the number of events passing and failing the
Fig. 5.Thepass-failratioRp/foftheleadingpTjetfortheLL(upper)andTT(lower) signalregioncategoriesasafunctionofthedifferencebetweenthesoft-dropmass oftheleadingjetandtheHiggsbosonmass,mj1-mH.Themeasuredratioindiffer- entbinsofmj1−mHisusedinthefit(redsolidline),exceptintheregionaround mj1−mH=0,whichcorrespondstothesignalregion(bluetriangularmarkers).The fittedfunctionisinterpolatedtoobtainRp/finthesignalregion.Thehorizontalbars onthedatapointsindicatethebinwidths.(Forinterpretationofthecoloursinthe figure(s),thereaderisreferredtothewebversionofthisarticle.)
double-b tagger selection, Rp/f≡Npass/Nfail,i.e.the“pass-fail ra- tio”.Theyieldintheantitagregion(ineachmjj,redbin)couldthen bescaledby Rp/f toobtainanestimateofthebackgroundnormal- ization inthesignal region.However, thereis asmallcorrelation betweenthedouble-b taggerdiscriminatorandmj1,whichistaken intoaccountbymeasuring thepass-failratio Rp/f asafunctionof mj1.Thesignalfractionwasfoundtobelessthan10−3intheside- bandregionsusedtoevaluate Rp/f,assumingasignalcrosssection
σ
(pp→X→HH→bbbb)of10 fb.The Rp/ffortheLLsignalregionismeasuredusingratioofthe numberofeventsinthe“LL,passing”and“LL,failing”sidebandre- gions, asdefined in Table 1.Likewise, the Rp/f for the TT signal regionusestheratioofthenumberofeventsinthe“TT,passing”
tothe“TT,failing”sidebandregions.ThevariationofRp/fasafunc- tionofmj1 ineachmj1sidebandisfittedwithaquadraticfunction.
Thefittothepass-failratioisinterpolatedtotheregionwheremj1 lieswithintheH jetmasswindowof105–135 GeV.Analternative fitusingathirdorderpolynomialwas foundtogivethesamein- terpolatedvalueofRp/fintheHiggsjetmasswindow.Everyevent in theantitagregionisscaled by thepass-failratio evaluatedfor themj1 ofthat event,to obtainthebackground predictioninthe signalregion.
Fig.5showsthequadraticfitinthemj1 sidebandsofthepass- fail ratio Rp/f as a function ofmj1, as obtained in the data. The backgroundpredictionusingthismethod,alongwiththenumber ofobservedeventsinthesignalregionisshowninFig.6.
Fig. 6.Thereducedmass distributionsmjj,red for theLL(upper)and TT(lower) signalregioncategories.Thepointswithbarsshowthedata,thehistogramwith shaded band shows the estimated background and associated uncertainty. The mjj,redspectrumforthebackgroundisobtainedbyweightingthemjj,red spectrum intheantitagregionbytheratioRp/fofFig.5.Thesignalpredictionsforabulk gravitonofmass1000 GeV,areoverlaidforcomparison,assumingacrosssection σ(pp→X→HH→bbbb)of10 fb.Thelastbinsofthedistributionscontainall eventswithmjj,red>3000 GeV.Thedifferencesbetweenthedataandthepredicted background,dividedbythedatastatisticaluncertainty(dataunc.)asgivenbythe Garwoodinterval [76],areshowninthelowerpanels.
Forresonancemassesof1200 GeV andabove,thebackground estimation is improved by simultaneously fitting a parametric model for the background and signal to the data in the signal andtheantitagregions formjj,red≥1100 GeV.Inthefit,theratio Rp/f obtainedfromthesidebandsisusedtoconstrain therelative numberofbackground eventsin thetwo regions. Toaccount for possible Rp/fdependenceonmjj,redathighmjj,red values,the Rp/f obtainedfromthefitsshowninFig.5isalsoparametrizedasalin- earfunctionofmjj,red.Thesignalnormalizationisunconstrainedin thefit,while theuncertaintiesintheparameters ofthe functions used to model the background and Rp/f are treated asnuisance parameters. For the background modelling, a choice among an exponentialfunction Ne−a mjj,red,a “levelled exponential” function Ne−a mjj,red/(1+a b mjj,red),anda“quadraticlevelled exponentialfunc- tion”Ne[−a mjj,red/(1+a b mjj,red)]−[−c m2jj,red/(1+b c m2jj,red)] wasmade,using aFisher F-test [77]. Ataconfidencelevel of95%,thelevelledex- ponentialfunctionwasfoundtobeoptimal. Sincethebackground shapes in the signal regions, as predicted using the antitag re-
gions,werefoundtobesimilar(Fig.6),theparametricbackground modellingwas tested usingthe antitagregion inthe databefore applyingittothesignalregion.
The simultaneous fits to the antitag and the signal regions are shown in Figs. 7 and 8, respectively, using the background modelonly.Thesearelabelledas“post-fit”curveswiththesignal region background yields constrained to be Rp/f times the back- ground yields from the antitag regions. The “pre-fit” curves, ob- tained by fitting the antitagandthe signal regions separately to thebackground-onlymodel,withthebackgroundeventyieldsun- constrained,arealsoshownforcomparison.Inthepost-fitresults, the Rp/fdependenceonmjj,redwasfoundtobenegligible.
Amongthefourfittedregions,correspondingtotheantitagand thesignalregionsintheLLandTTcategories, theeventswiththe highestvalueofmjj,redoccur intheantitagregionoftheLLcate- gory,ataroundmjj,red=2850 GeV. Asthe parametricbackground model is only reliable within the range of observed events, the likelihoodis onlyevaluated uptomjj,red=3000 GeV.Thisresults inatruncationofthesignaldistributionforresonanceshavingmX of2800 GeV andabove,withsignalefficiencylossesincreasingto 30%formX=3000 GeV,asshowninFig.4.
Closuretestsofthebackgroundestimationmethodswere per- formed using simulated multijet samples withsignals of various crosssections.Thetestsindicatedagoodconsistencybetweenthe expectedandtheassumedsignalstrengths.
5. Systematicuncertainties
The following sources ofsystematicuncertainty affectthe ex- pectedsignalyields. Noneoftheseleadtoa significantchangein thesignalshape.
Trigger response modelling uncertainties are particularly im- portant formjj,red<1200 GeV,where thetriggerefficiency drops below99%.Ascalefactorisappliedtocorrectforthedifferencein efficiencyobservedbetweenthe dataandsimulation.Thecontrol triggerusedtomeasurethisscalefactorrequiresasingle AK4jet withpT>260 GeV,andittooissubjecttosomeinefficiencywhen mjj,rediscloseto750 GeV,becauseofadifferencebetweenthejet energyscaleusedinthetriggerandthatusedintheofflinerecon- struction.Thisinefficiencyismeasuredusingsimulations,andhas anassociatedtotaluncertaintyofbetween1%and15%.
Thejetenergyscaleandresolutionuncertaintyisabout1% [63, 64].Thejetmassscaleandresolution,and
τ
21selectionefficiency data-to-simulation scale factor are measured using a sample of mergedW jetsinsemileptonictt events.Thecorrespondinguncer- taintiesareextrapolatedtoahigher pT rangethanthatassociated withtt events,usingsimulations.Acorrectionfactorisappliedto account forthe difference in the jet shower profile of W→qq and H→bb decays, by comparing the ratio of the efficiency of H and W jets using the pythia 8 and herwig++ shower gener- ators. The jet mass scale and resolution has a 2% effect on the signal yields becauseof a changeinthe meanof theH jet mass distribution. Theτ
21 selection efficiency uncertainty amounts to a +30/−26% change in the signal yields. The uncertainty in the H tagging correction factor is in the range 7–20% depending on theresonancemassmX.The double-b taggerefficiencyscalefac- toruncertainty isabout2–5%,depending onthe double-b tagger requirementthreshold andjet pT, andis propagated to the total uncertaintyinthesignalyield.Theimpact ofthePDFsandthetheoretical scaleuncertainties areestimatedtobe0.1–2%,usingthePDF4LHCprocedure [50],and affecttheproductofthesignalacceptanceandtheefficiency.The PDF and scale uncertainties have negligibleimpact on the signal mjj,red distributions.Additionalsystematicuncertaintiesassociated
Fig. 7.Thereducedmassmjj,reddistributionsintheantitagregionfortheLL(left)andTT(right)categories.Theblackmarkersarethedatawhilethecurvesshowthepre-fit andpost-fitbackgroundshapes.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as givenbytheGarwoodinterval [76],areshowninthelowerpanels.
Fig. 8.Thereducedmassmjj,red distributionsinthesignalregionfortheLL(left)andtheTT(right)categories.Theblackmarkersarethedatawhilethecurvesshow thepre-fitandpost-fitbackgroundshapes.Thecontributionofbulkgravitonsofmasses1600and2500 GeV inthe signalregionareshownassumingacross section σ(pp→X→HH→bbbb)of10 fb.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as givenbytheGarwoodinterval [76],areshowninthelowerpanels.
withthepileupmodelling(2%)andtheintegratedluminosityde- termination(2.5%) [78],areappliedtothesignalyield.
Themainsource ofuncertaintyforthe multijetbackgroundin theregion mjj,red<1200 GeV is duetothe statisticaluncertainty in the fit to the Rp/f ratio performed in the H jet mass side- bands. This uncertainty, amounting to 2.6% for the LL, and 6.8%
for the TT signal categories, is fully correlated between all bins ofaparticularestimate.Furthermore,thestatisticaluncertaintyin the antitag region is propagated to the signal region when the estimate is made. This is uncorrelated from bin to bin,and the Barlow–Beeston Lite [79,80] method is used to treat the bin-by- bin statistical uncertainty in the data. These uncertainties affect both the shape of the background in the mjj,red distribution and thetotalbackgroundyield.
For mjj,red≥1200 GeV, the overall background uncertainty is obtainedfrom the uncertainty in the four simultaneous fits per- formed for the antitag andthe signal regions in the LL andthe
Table 2
Summaryofsystematicuncertaintiesinthesignalandbackgroundyields.
Source Uncertainty (%)
Signal yield
Trigger efficiency 1–15
H jet energy scale and resolution 1 H jet mass scale and resolution 2
H jetτ21selection +30/−26
H-tagging correction factor 7–20 Double-b tagger discriminator 2–5
Pileup modelling 2
PDF and scales 0.1–2
Luminosity 2.5
Background yield
Rp/ffit 2.6 (LL category) 6.8 (TT category)
TT categories. The dependenceof Rp/f onmjj,red isaccountedfor, althoughthiswasfoundtobenegligible.
AcompletelistofsystematicuncertaintiesisgiveninTable2.
Fig. 9.Thelimitsforthespin-0radion(upper)andthespin-2bulkgraviton(lower) models.Theresultfor mX<1200 GeV usesthebackgroundpredictedusingthe controlregions,whileformX≥1200 GeV thebackgroundisderivedfromacom- binedsignalandbackgroundfittothedatainthecontrolandthesignalregions.
Thepredictedtheoreticalcrosssectionsforanarrowradionorabulkgravitonare alsoshown.
6. Results
AsshowninFigs.6and8,forthesignalregions,theobserved mjj,red distribution is consistent with the estimated background.
Theresultsare interpreted intermsof upperlimitsontheprod- uct of the production cross sections andthe branching fractions
σ
(pp→X)B(X→HH→bbbb)forradionandbulkgravitonofvar- iousmasshypotheses.Theasymptoticapproximationofthemod- ifiedfrequentist approachforconfidence levels,takingtheprofile likelihoodasateststatistic [81–83],isused.Thelimitsareshown inFig.9fora narrowwidth radionorabulk graviton. Theseare comparedwiththe theoretical valuesofthe productof thecross sectionsandbranchingfractionsforthe benchmarksκ
/MPl=0.5 and R=3 TeV, where the narrow width approximation for a signal is valid, and where the corresponding HH decay branch- ing fractions in the mass range of interest are 10 and 23%, for thegraviton andtheradion,respectively [13].Theexpectedlimits onthebulkgraviton aremorestringentthanthoseontheradion becauseof thehigher efficiencyofthe |η
(j1,j2)| separationre- quirementfortheformersignal.The upperlimits on the productionof the cross sectionsand branchingfractionliesin therange126–1.4 fb fora narrowreso- nanceX ofmass 750<mX<3000 GeV.Assuming R=3 TeV, a bulkradionwithamassbetween970and1400 GeV isexcludedat 95%confidencelevel,exceptina smallregion closeto1200 GeV, wheretheobservedlimit is11.4 pb,thetheoreticalpredictionbe- ing11.2 pb.
7. Summary
A search for a narrow massive resonance decaying to two standardmodelHiggsbosonsisperformedusingtheLHCproton–
proton collision data collected at a centre-of-mass energy of 13 TeV by theCMS detector,and corresponding to an integrated luminosityof35.9 fb−1.Thefinalstateconsistsofeventswithboth Higgs bosons decaying to b quark–antiquark pairs, which were identifiedusingjetsubstructureandb-taggingtechniquesapplied to large-area jets. The data are found to be consistent withthe standard model expectations, dominated by multijet events. Up- perlimitsaresetontheproductsoftheresonantproductioncross sections ofa Kaluza–Klein bulk graviton anda Randall–Sundrum radion, and their branching fraction to HH→bbbb. The limits range from 126 to 1.4 fb at 95% confidence level for bulk gravi- tonsandradionsin themassrange 750–3000 GeV.Forthe mass scale R=3 TeV, a radionof mass between970 and1400 GeV (except in a small region close to 1200 GeV) is excluded. These limitson the bulk graviton andthe radiondecaying to a pair of standardmodelHiggsbosonsarethemoststringenttodate,over themassrangeexplored.
Acknowledgements
WecongratulateourcolleaguesintheCERNacceleratordepart- ments for the excellent performance of the LHC and thank the technicalandadministrative staffsatCERN andatother CMS in- stitutes for their contributions to the success of the CMS effort.
Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses.
Finally, we acknowledge the enduring support for the construc- tionandoperation oftheLHC andtheCMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);
MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN- CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin- land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun- gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy);
MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei);ThEP- Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).
Individuals have received support from the Marie-Curie pro- gramme and the European Research Council and Horizon 2020 Grant,contract No. 675440 (EuropeanUnion);the Leventis Foun- dation;the A. P. Sloan Foundation; the Alexandervon Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pourlaFormationàlaRecherchedansl’Industrieetdansl’Agricul- ture (FRIA-Belgium); the Agentschapvoor Innovatie door Weten- schap en Technologie (IWT-Belgium); the Ministry of Education, YouthandSports(MEYS)oftheCzechRepublic;theCouncilofSci- enceandIndustrialResearch,India;theHOMINGPLUSprogramme of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund, theMobilityPlusprogramme oftheMinistryofScienceandHigherEducation,theNationalSci- ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/
B/ST2/02861,Sonata-bis2012/07/E/ST2/01406; the NationalPrior- itiesResearchProgrambyQatar NationalResearchFund;thePro- grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF;
theRachadapisekSompotFundforPostdoctoralFellowship,Chula- longkornUniversityandtheChulalongkornAcademicintoIts 2nd CenturyProjectAdvancement Project(Thailand);theWelchFoun- dation,contractC-1845;andtheWestonHavensFoundation(USA).
References
[1] ATLASCollaboration,ObservationofanewparticleinthesearchfortheStan- dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)01,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214.
[2] CMSCollaboration,Observationofanewboson atamassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.
[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin ppcollisionsat√
s=7 and8TeV,J.HighEnergyPhys.06(2013)081,https://
doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.
[4] D. deFlorian,J.Mazzitelli,Higgsboson pair productionat next-to-next-to- leadingorderinQCD,Phys.Rev.Lett.111(2013)201801,https://doi.org/10. 1103/PhysRevLett.111.201801,arXiv:1309.6594.
[5] L.Randall,R.Sundrum,Alargemasshierarchyfromasmallextradimension, Phys. Rev.Lett. 83(1999) 3370,https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.
[6] W.D.Goldberger,M.B.Wise,Modulusstabilizationwithbulkfields,Phys.Rev.
Lett.83(1999)4922, https://doi.org/10.1103/PhysRevLett.83.4922,arXiv:hep- ph/9907447.
[7] C.Csaki,M.Graesser,L.Randall,J.Terning,Cosmologyofbranemodelswith radion stabilization,Phys. Rev.D62(2000)045015, https://doi.org/10.1103/ PhysRevD.62.045015,arXiv:hep-ph/9911406.
[8] C.Csaki,M.L.Graesser,G.D.Kribs,Radiondynamicsandelectroweakphysics, Phys. Rev.D63 (2001) 065002,https://doi.org/10.1103/PhysRevD.63.065002, arXiv:hep-th/0008151.
[9] H.Davoudiasl,J.L.Hewett,T.G.Rizzo,PhenomenologyoftheRandall–Sundrum gaugehierarchymodel,Phys.Rev.Lett.84(2000)2080,https://doi.org/10.1103/ PhysRevLett.84.2080,arXiv:hep-ph/9909255.
[10] O.DeWolfe,D.Z.Freedman,S.S.Gubser,A.Karch,Modelingthefifthdimen- sionwithscalarsandgravity,Phys.Rev.D62(2000)046008,https://doi.org/ 10.1103/PhysRevD.62.046008,arXiv:hep-th/9909134.
[11] K.Agashe,H.Davoudiasl,G.Perez,A.Soni,WarpedgravitonsattheLHCand beyond,Phys.Rev.D76(2007)036006,https://doi.org/10.1103/PhysRevD.76. 036006,arXiv:hep-ph/0701186.
[12] G.F.Giudice,R.Rattazzi,J.D.Wells,Graviscalarsfromhigherdimensionalmet- ricsandcurvatureHiggsmixing,Nucl.Phys.B595(2001)250,https://doi.org/ 10.1016/S0550-3213(00)00686-6,arXiv:hep-ph/0002178.
[13]A.Oliveira,Gravityparticlesfromwarpedextradimensions,areview.Parti– KKgraviton,arXiv:1404.0102,2014.
[14] G.C.Branco,P.M.Ferreira,L.Lavoura,M.N.Rebelo,M.Sher,J.P.Silva,Theory andphenomenologyoftwo-Higgs-doubletmodels,Phys.Rep.516(2012)01, https://doi.org/10.1016/j.physrep.2012.02.002,arXiv:1106.0034.
[15] A. Djouadi, The anatomy ofelectroweak symmetrybreaking. Tome II: the Higgsbosonsinthe