• No results found

Physics Letters B - Spiral

N/A
N/A
Protected

Academic year: 2024

Share "Physics Letters B - Spiral"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton–proton collisions at √

s = 13 TeV

.The CMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received13October2017

Receivedinrevisedform23March2018 Accepted29March2018

Availableonline4April2018 Editor: M.Doser

Keywords:

CMS Physics Extradimensions Graviton Radion

di-Higgsbosonresonance

AsearchforamassiveresonancedecayingintoapairofstandardmodelHiggsbosons,inafinalstate consisting of two b quark–antiquark pairs, is performed. A data sample of proton–proton collisions at acentre-of-massenergy of13 TeV isused, collectedby the CMSexperiment atthe CERN LHCin 2016,andcorrespondingtoanintegratedluminosityof35.9 fb1.TheHiggsbosonsarehighlyLorentz- boosted andare eachreconstructedasasinglelarge-areajet. Thesignalischaracterizedbyapeakin thedijetinvariantmassdistribution,aboveabackgroundfromthestandardmodelmultijetproduction.

Theobservationsareconsistentwiththebackgroundexpectations,andareinterpretedasupperlimitson theproductsofthes-channelproductioncrosssectionsandbranchingfractionsofnarrowbulkgravitons andradionsinwarpedextra-dimensionalmodels.Thelimitsrangefrom126to1.4 fb at95%confidence levelforresonanceswithmassesbetween750and3000 GeV,andarethemoststringenttodate,over theexploredmassrange.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In the standard model (SM), the pair production of Higgs bosons(H) [1–3] inproton–proton(pp) collisionsat√

s=13 TeV isarareprocess [4].However,theexistenceofmassiveresonances decaying to Higgs boson pairs (HH) in many new physics mod- els mayenhancethisrateto a levelobservable attheCERN LHC using the current data. For instance, models with warped extra dimensions(WED) [5] containnewparticlessuchasthespin-0ra- dion [6–8] andthespin-2firstKaluza–Klein(KK)excitationofthe graviton [9–11],whichhavesizeablebranchingfractionstoHH.

TheWEDmodelshaveanextraspatialdimensioncompactified between two branes, with the region between (called the bulk) warpedviaanexponentialmetric

κ

l,

κ

beingthewarpfactorand l thecoordinateof theextra spatial dimension [12]. The reduced Planck scale (MPlMPl/8

π

, MPl beingthe Planck scale) is con- sideredafundamentalscale.Thefreeparametersofthemodelare

κ

/MPlandtheultravioletcutoffofthetheoryR≡√

6eκlMPl[6].

In pp collisionsatthe LHC,the graviton andthe radionare pro- ducedprimarilythrough gluon–gluon fusionandarepredictedto decaytoHH [13].

Other scenarios, such as the two-Higgs doublet models [14]

(in particular, the minimal supersymmetric model [15]) andthe

E-mailaddress:cms-publication-committee-chair@cern.ch.

Georgi–Machacek model [16] predict spin-0 resonances that are produced primarily through gluon–gluon fusion, anddecay toan HH pair.TheseparticleshavethesameLorentzstructureandeffec- tive couplingstothe gluonsand, fornarrowwidths,resultinthe samekinematicdistributions asthoseforthebulk radion.Hence, theresultsofthispaperarealsoapplicabletothisclassofmodels.

Searches for a new particle X in the HH decay channel have beenperformedby theATLAS [17–19] andCMS [20–24] Collabo- rations inpp collisions at √

s=7 and8 TeV. More recently, the ATLAS Collaboration haspublished limitson the production of a KKbulkgraviton,decayingtoHH,inthebbbb finalstate,usingpp collisiondataat√

s=13 TeV,correspondingtoanintegratedlumi- nosityof3.2 fb1[25].Becausethelongitudinalcomponentsofthe W and Z bosonscoupletotheHiggsfieldintheSM, aresonance decaying to HH potentially also decays intoWW and ZZ, with a comparablebranching fraction forX→ZZ, andwitha branching fractionforX→WW thatistwiceaslarge.SearchesforXWW andZZ havebeenperformedbyATLASandCMS [26–35].

This letter reportson the search for a massive resonance de- caying to an HH pair, in the bbbb final state (with a branching fraction≈33% [36]),performedusinga datasetcorresponding to 35.9 fb1 ofpp collisionsat√

s=13 TeV.Thesearch significantly improves upon the CMS analysis performed using the LHC data collectedat√

s=8 TeV [24],andextendsthesearchedmassrange to 750–3000 GeV. This search is conducted for both the radion https://doi.org/10.1016/j.physletb.2018.03.084

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

andthe graviton, whereas the earliersearch only considered the former.

In this search, the X→HH decay would result in highly Lorentz-boostedandcollimated decayproductsofH→bb,which are referred to asH jets. These are reconstructed using jet sub- structure and jet flavour-tagging techniques [37–39]. The back- ground consists mostly of SM multijet events, and is estimated using several control regions defined in the phase space of the massesandflavour-tagging discriminatorsof the two H jets, and the HH dijet invariant mass,allowing thebackground to be pre- dicted over the entire range of mX explored. The signal would appearasa peak inthe HH dijet invariant massspectrum above asmoothbackgrounddistribution.

2. TheCMSdetectorandeventsimulations

TheCMSdetectorwithits coordinatesystemandtherelevant kinematic variables is described in Ref. [40]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m in- ternal diameter, providing a magnetic field of 3.8 T. Within the field volume are siliconpixel andstrip trackers, alead tungstate crystalelectromagneticcalorimeter (ECAL), anda brass andscin- tillatorhadroncalorimeter(HCAL),eachcomposed ofabarreland twoendcapsections.The trackercoversa pseudorapidity

η

range from−2.5 to 2.5 withthe ECAL andthe HCAL extending up to

|

η

|=3. Forward calorimeters in the region up to |

η

|=5 pro- vide almost hermetic detector coverage. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outsidethesolenoid,coveringaregionof|

η

|<2.4.

Events ofinterest are selected usinga two-tieredtrigger sys- tem [41].The firstlevel(L1),composed ofcustom hardwarepro- cessors,uses informationfromthe calorimetersandmuon detec- torstoselecteventsatarateofaround100 kHz.Thesecondlevel, knownas thehigh-level trigger (HLT), consistsofa farm of pro- cessorsrunningaversionofthefulleventreconstructionsoftware optimizedforfastprocessing,andreducestheeventratetoaround 1 kHz beforedata storage.Eventsare selectedatthe triggerlevel bythepresenceofjetsofparticlesinthedetector.TheL1trigger algorithmsreconstructjetsfromenergydeposits inthecalorime- ters. At the HLT, physics objects (charged and neutral hadrons, electrons,muons,andphotons)arereconstructedusingaparticle- flow(PF)algorithm [42].The anti-kT algorithm [43,44] isusedto clustertheseobjectswithadistanceparameterof0.8(AK8jets)or 0.4(AK4jets).

Bulkgravitonandradionsignaleventsaresimulatedatleading orderusing theMadGraph5_amc@nlo 2.3.3 [45] eventgenerator formassesintherange750–3000 GeV andwidthsof1 MeV (nar- row width approximation). The NNPDF3.0 leading order parton distribution functions (PDFs) [46], taken from the LHAPDF6 PDF set [47–50], withthefour-flavour scheme,isused.Theshowering andhadronizationofpartonsissimulatedwithpythia8.212 [51].

Theherwig++ 2.7.1 [52] generatorisusedforanalternativemodel toevaluatethesystematicuncertaintyassociatedwiththeparton showerandhadronization.The tuneCUETP8M1-NNPDF2.3LO [53]

is used forpythia 8, while the EE5C tune [54] is used forher- wig++.

Thebackgroundismodelledentirelyfromdata.However,sim- ulatedbackground samplesare used to develop and validate the background estimation techniques, prior to being applied to the data.These are multijetevents, generated atleading order using MadGraph5_amc@nlo,andtt+jets, generatedatnext-to-leading orderusingpowheg2.0 [55–57].Boththesebackgroundsareinter- facedtopythia8forsimulatingthepartonshowerandhadroniza- tion.Studiesusingsimulations establishedthat themultijetcom-

ponentismorethan99%ofthebackground,withtherestmostly fromtt+jets production.

AllgeneratedsampleswereprocessedthroughaGeant4-based [58,59] simulationoftheCMSdetector.Multiplepp collisionsmay occur in the same oradjacent LHC bunch crossings(pileup) and contribute totheoveralleventactivityinthedetector.Thiseffect isincludedinthesimulations,andthesamplesarereweightedto matchthenumberofpp interactionsobservedinthedata,assum- ingatotalinelasticpp collisioncrosssectionof69.2 mb [60].

3. Eventselection

Events were collected using several HLT algorithms. The first required the scalar pT sumof all AK4 jetsin the event (HT) to be greaterthan800or900 GeV,depending ontheLHCbeamin- stantaneous luminosity. A second trigger criterion required HT≥ 650 GeV, with a pair of AK4 jets with invariant mass above 900 GeV and a pseudorapidityseparation |

η

|<1.5.A third set oftriggers selectedeventswiththescalar pT sumofallAK8jets greaterthan650or700 GeV andthepresenceofan AK8jetwith a “trimmedmass”above50 GeV,i.e.thejet massafterremoving remnants ofsoftradiationusingjet trimmingtechnique [61].The fourthtriggering condition wasbased onthe presenceofan AK8 jet with pT>360 GeV and trimmed mass greater than 30 GeV.

Thelast triggerselection acceptedeventscontainingtwoAK8jets having pT>280 and200 GeV with atleast onehaving trimmed massgreaterthan30 GeV,togetherwithanAK4jetpassingaloose b-taggingcriterion.

The pp interaction vertex with the highest

p2T of the as- sociated clusters of physics objects is considered to be the one associatedwiththehardscatteringinteraction,theprimaryvertex.

Thephysicsobjectsarethejets,clusteredusingthejetfindingal- gorithm [43,44] withthe tracksassigned tothe vertexasinputs, and the associated missing transverse momentum, taken as the negative vectorsumofthe pT ofthosejets. Theotherinteraction verticesaredesignatedaspileupvertices.

Tomitigatetheeffectofpileup,particles areassignedweights usingthepileupper particleidentification(PUPPI)algorithm [62], withtheweightcorrespondingtoitsestimatedprobabilitytoorig- inatefromapileupinteraction.Chargedparticlesfrompileupver- ticesreceiveaweightofzerowhilethosefromtheprimaryvertex receiveaweightofone.Neutralparticlesareassignedaweightbe- tweenzeroandone,withhighervaluesforthoselikelytooriginate fromtheprimaryvertex.ParticlesarethenclusteredintoAK8jets.

Thevectorsumoftheweightedmomentaofallparticlesclustered inthejetistakentobethejetmomentum.Toaccount fordetec- tor response nonlinearity,jet energy correctionsare applied as a functionofjet

η

andpT[63,64].Ineachevent,theleadingandthe subleadingpTAK8jets,j1 andj2,respectively,arerequiredtohave pT>300 GeV and|

η

|<2.4.

Theremovalofeventscontainingisolatedleptons(electronsor muons) with pT>20 GeV and|

η

|<2.4 helps suppresstt+jets anddibosonbackgrounds.The isolationvariableis definedasthe scalar pT sum of the charged and neutral hadrons, and photons in a cone of R=0.3 for an electron or R=0.4 fora muon, whereR

(

η

)2+(φ)2,φbeingtheazimuthal angleinra- dians.Theenergyfrompileupdepositedintheisolationcone,and the pT oftheleptonitself,is subtracted [65,66].The isolation re- quirementremovesjetsmisidentifiedasleptons.Additionalquality criteria are applied to improve the purity of the isolated lepton samples.Electronspassingcombinedisolation andquality criteria correspondingtoaselectionefficiencyof90%(70%)aredesignated

“loose” (“medium”)electrons.Forthe “loose”(“medium”)muons, the totalassociated efficiencyis 100% (95%).The probability ofa jet to be misidentified as an electron ora muon is in the range

(3)

0.5–2%,dependingonpT,

η

,andthechoiceofmediumorloosese- lectioncriteria.Eventscontainingonemediumlepton,ortwoloose leptonsofthesameflavour,butofoppositecharge,arerejected.

The H→bb systemis reconstructed as a single high-pT AK8 jet, where the decay products have merged within the jet, and thetwohighest pT jetsintheeventare assumedtobe theHiggs boson candidates. The jet is groomed [67] to remove soft and wide-angle radiation using the soft-drop algorithm [68,69], with the soft radiationfraction parameter z set to 0.1 andthe angu- lar exponent parameter β set to 0. The groomed jet is used to compute thesoft-drop jet mass,which peaksatthe Higgsboson massforsignaleventsandreducesthemassofbackgroundquark- andgluon-initiatedjets. Dedicated mass corrections [70], derived fromsimulationanddatainaregionenrichedwithtt eventswith merged W→qq decays, are applied to the jet mass inorder to remove residual dependenceon thejet pT,andto matchthe jet massscaleandresolutionobservedindata.

Thesoft-dropmassesofj1 andj2arerequiredtobewithinthe range105–135 GeV, withan efficiency ofabout 60–70%,for jets arisingfromasignal ofmassmX intherange750–3000 GeV.The

“N-subjettiness”algorithmisusedtodeterminetheconsistencyof the jet with two subjets froma two-pronged H→bb decay, by computing the inclusive jet shape variables

τ

1 and

τ

2 [71]. The ratio

τ

21

τ

2/

τ

1 witha valuemuch lessthan oneindicates ajet with two subjets. The selection

τ

21<0.55 is used, having a jet pT-dependentefficiencyof 50–70%,beforeapplying thesoft-drop massrequirement.

For background events, j1 and j2 are often well separated in

η

,especiallyathighinvariant mass(mjj)ofj1 andj2.Incontrast, signaleventsthatcontain aheavyresonancedecayingtotwo en- ergetic H jets are characterized bya small separationofthe two jetsin

η

. Events are thereforerequired to havea pseudorapidity separation|

η

(j1,j2)|<1.3.

Theefficiencyofthetriggercombinationismeasuredinasam- ple of multijet events, collected with a control trigger requiring a single AK4 jet with pT>260 GeV, and with the leading and the subleading pT AK8 jets, j1 and j2, respectively, passing the above selectionson pT,

η

,andthesoft-drop mass.The efficiency isgreater than99% formjj1100 GeV,andintherange40–99%

for750<mjj<1100 GeV.The triggerefficiencyofthe simulated samplesiscorrectedusingascalefactortomatchtheobservedef- ficiencyin the data. This scale factor isapplied asa function of

|

η

(j1,j2)|becauseithasamilddependenceonthisvariable.

Themainmethodtosuppressthemultijetbackgroundisb tag- ging: sincea true H→bb jet contains two b hadrons, the H jet candidatesareidentifiedusingthededicated“double-b tagger”al- gorithm [72]. The double-b tagger exploits the presence of two hadronized b quarks inside the H jet, anduses variables related tob hadronlifetimeandmass todistinguishbetweenH jets and thebackgroundfrommultijetproduction;italsoexploitsthefact thattheb hadronflightdirectionsarestronglycorrelatedwiththe axesusedtocalculatetheN-subjettinessobservables.Thedouble-b tagger is a multivariate discriminator with output between −1 and 1, with a higher value indicating a greater probability for the jet to contain a bb pair. The double-b tagger discriminator thresholds of 0.3 and 0.8 correspond to H jet tagging efficien- ciesof 80and 30%and are referred toas “loose”(L) and“tight”

(T)requirements, respectively. Events musthave the two leading pT AK8jetssatisfyingtheloosedouble-b taggerrequirement.The data-to-simulationscale factor forthe double-b tagger efficiency ismeasured inan eventsample enriched in bb pairsfromgluon splitting [72],andappliedtothesignalstoobtainthecorrectsig- nalyields.

The main variable used in the search for a HH resonance is the “reduced dijet invariant mass” mjj,redmjj(mj1mH)

Fig. 1.Thesoft-dropmass(upper),theN-subjettinessτ21(middle),andthedouble-b taggerdiscriminator (lower) distributions ofthe selectedAK8 jets.The multijet backgroundcomponentsfor thedifferentjet flavoursareshown:jetshavingtwo Bhadrons(bb)orasingleone(b),jetshavingacharmhadron(c),andallother jets(light).Alsoplottedarethedistributionsforthesimulatedbulkgravitonand radionsignalsofmasses1400and2500 GeV.Thenumberofsignalandbackground eventscorrespondtoanintegratedluminosityof35.9 fb1.Asignalcrosssection σ(ppXHHbbbb)=20 pb isassumedforallthe masshypotheses.The eventsarerequiredtohavepassedthetriggerselection,leptonrejection,theAK8 jet kinematicselectionspT>300 GeV and|η|<2.4,and |η(j1,j2)|<1.3.The reduceddijetinvariantmassmjj,redisrequiredtobegreaterthan750 GeV.TheN- subjettinessrequirementofτ21<0.55 isappliedtotheupperandlowerfigures.

Thesoft-dropmassesofthetwojetsarebetween105–135 GeV forthemiddleand lowerfigures.

(mj2mH), where mj1 and mj2 are the soft-drop masses of the leading and subleading H-tagged jets in the event, and mH= 125.09 GeV [73,74] is theHiggs bosonmass.The quantity mjj,red is usedratherthanmjj sinceby subtractingthe soft-dropmasses of thetwo H-tagged jetsandaddingback the exactHiggs boson massmH,fluctuationsinmj1 andmj2 duetothejet massresolu-

(4)

Fig. 2.Thejetseparation|η(j1,j2)|(left)andthereduceddijetinvariantmassmjj,red(right)distributions.Themultijetbackgroundcomponentsforthedifferentjetflavours areshown:eventscontainingatleastonejetwithtwoBhadrons(bb)orasingleone(b),eventscontainingajethavingacharmhadron(c),andallotherevents(light).Also plottedarethedistributionsforthesimulatedbulkgravitonandradionsignalsofmasses1400and2500 GeV.Thenumbersofsignalandbackgroundeventscorrespondto anintegratedluminosityof35.9 fb1.Thesignalcrosssectionσ(ppXHHbbbb)isassumedtobe20 pb forallthemasshypotheses.Theeventsarerequiredtohave passedtheonlineselection,leptonrejection,theAK8jetkinematicselectionspT>300 GeV,|η|<2.4.Thesoft-dropmassesofthetwojetsarebetween105and135 GeV, andtheN-subjettinessrequirementofτ21<0.55 andmjj,red>750 GeV areapplied.Themjj,reddistributions(right)require|η(j1,j2)|<1.3.

tionarecorrected,leadingto8–10%improvementinthedijetmass resolution.Arequirementofmjj,red>750 GeV isappliedforselect- ingsignal-likeevents.

Thesoft-dropmass,

τ

21,anddouble-b taggerdiscriminatordis- tributionsofthetwo leading pT jetsare showninFig.1 forsim- ulatedevents after passing the onlineselection, lepton rejection, kinematicselection, andthe requirementmjj,red>750 GeV. Also, the N-subjettiness requirement of

τ

21<0.55 is applied for the soft-drop mass and the double-b tagger distributions, while the soft-drop mass requirement is applied to the

τ

21, and double-b taggerdiscriminator distributions. Sincesome ofthe triggers im- poseatrimmedjetmassrequirement,thisaffectstheshapeofthe offlinesoft-dropjetmass,resultinginasteepriseabove∼20 GeV.

The distributions of the |

η

(j1,j2)| and the mjj,red variables are showninFig.2.Inthesefigures,themultijetbackgroundisshown fordifferentjet flavourcategories:jetshavingtwoBhadrons(bb) orasingle one (b),jetshavingacharm hadron(c),andall other jets(light).

Thedouble-b taggerdiscriminator ofthetwo leadingAK8jets mustexceed the loosethreshold. In addition,if both discrimina- torvaluesalsoexceedthetightthreshold,eventsareclassifiedin the“TT”category. Otherwise,they are classifiedin the“LL” cate- gory,which contains events withboth j1 andj2 failingthe tight thresholdaswell aseventswitheitherj1 orj2 passingthe tight thresholdwhiletheotherpassestheloosethresholdonly.

The backgrounds are estimated separately for each category, andthecombinationofthelikelihoodsfortheTTandLLcategories givestheoptimalsignalsensitivityoverawiderangeofresonance masses,accordingtostudiesperformedusingsimulatedsignaland multijetsamples.TheTTcategoryhasagoodbackgroundrejection formX up to 2000 GeV. At higher resonance masses, where the backgroundissmall, theLLcategory providesbetter signalsensi- tivity. The full event selection efficiencies forbulk gravitons and radionsofdifferentassumedmassesare showninFig. 3. Thera- dion has a smaller efficiency than the bulk graviton because its

|

η

(j1,j2)| distributionis considerablywider than that ofa bulk gravitonofthesamemass,asshowninFig.2(left).

4. Signalandbackgroundmodelling

Themethodchosen forthebackgroundmodellingdependson whethertheresonancemassmXisbeloworabove1200 GeV,since atlow masses thebackground doesnot fall smoothly as a func-

Fig. 3.Thesignalselectionefficienciesforthebulkgravitonandradionmodelsfor differentmasshypothesesoftheresonances,shownfortheLLandtheTTsignal eventcategories.Owingtothelargesamplesizesofthesimulatedevents,thesta- tisticaluncertaintiesaresmall.

tion of mjj,red, because of the trigger requirements, while above 1200 GeV it does. The background estimation relies on a set of control regions to predict the total background shape and nor- malization in the signal regions. The entire range of the mjj,red distributionabove750 GeV isusedfortheprediction.

For signals with mX1200 GeV, the underlying background distribution falls monotonically with mjj,red, thus allowing the background shape to be modelled by a smooth function, above which alocalized signal issearched for.This smooth background modellinghelpstoreduceuncertaintiesinthebackgroundestima- tionfromlocalstatisticalfluctuationsinmjj,red,therebyimproving the signal search sensitivity. The parameters of the function and itstotalnormalizationareconstrainedbyasimultaneousfitofthe signal andbackgroundmodelsto thedatain thecontrol andthe signalregions.FormX1200 GeV,themjj,reddistributionsforthe signalaremodelledusingthesumofaGaussianandaCrystalBall function [75],asshowninFig.4foronesignalcategory.Thesame modellingisusedfortheothersignalcategories,withdifferentpa- rametersfortheGaussianandtheCrystalBallfunctions.

Thesignalandcontrolregionsaredefinedbytwovariablesre- latedtotheleading pTjetj1:(i)itssoft-dropmassmj1 and(ii)the valueofthediscriminatorofthedouble-b tagger.Thebackground

(5)

Fig. 4.Thebulkgravitonsignalmjj,reddistributionfortheLLcategory,modelledus- ingthesumofGaussianandCrystalBallfunctions.Thismodellingisperformedfor signalsintherange1100<mjj,red<3000 GeV,wherethebackgrounddistribution fallssmoothly.Noeventsareobservedwithmjj,redgreaterthan3000 GeV.

Table 1

Definitionofthesignal,the antitag,andthesidebandregionsusedfortheback- groundestimation.Theregionsaredefinedintermsofthesoft-dropmassesofthe leadingpT(j1)andthesubleadingpT(j2)AK8jets,andtheirdouble-btaggerdis- criminatorvalues.

Event category Jet Soft-drop mass (GeV) Double-b tagger discriminator Signal (LL) j1

105–135

>0.3, but

j2 not both>0.8

Signal (TT) j1

>0.8 j2

Antitag (LL) j1

105–135

<0.3

j2 0.3–0.8

Antitag (TT) j1 <0.3

j2 >0.8

Sideband j1 <105 or>135 >0.3, but

(LL, passing) j2 105–135 not both>0.8

Sideband j1 <105 or>135

>0.8 (TT, passing) j2 105–135

Sideband j1 <105 or>135 <0.3

(LL, failing) j2 105–135 0.3–0.8

Sideband j1 <105 or>135 <0.3

(TT, failing) j2 105–135 >0.8

is estimatedin bins of the mjj,red distribution. Considering these twovariables,severalregionsaredefined.

The pre-tag region includes events fulfilling the selection re- quirements inSections 2–3 apart fromthose on mj1 andon the j1 double-b tagger discriminator. The signal region is the subset of pre-tag events where mj1 is inside the H jet mass window of 105–135 GeV, and with the j1 double-b tagger discriminator greaterthan0.3or0.8,fortheLLandTTregions,respectively.The antitagregionsrequirethej1 double-b taggerdiscriminatortobe lessthan0.3, withtherequirementonj2 beingthesameasthat for the corresponding LL or TT signal regions. The mj1 sideband regionconsistsofeventsinthepre-tagregion,wheremj1 liesout- side theH jetmass window.Based onwhetherj1 passesorfails thedouble-b tagger discriminator threshold,the sidebandregion is divided into either “passing”or “failing”, respectively. The an- titagregionsare dominatedby themultijetbackground,andhave identicalkinematicdistributionstothemultijetbackgroundevents in the signal region, according to studies using simulations. The definitionsofthesignal,theantitag,andthesidebandregionsare giveninTable1.

Intheabsence ofacorrelation betweenmj1 andthe double-b tagger discriminator values, one could measure in the mj1 side- band the ratio of the number of events passing and failing the

Fig. 5.Thepass-failratioRp/foftheleadingpTjetfortheLL(upper)andTT(lower) signalregioncategoriesasafunctionofthedifferencebetweenthesoft-dropmass oftheleadingjetandtheHiggsbosonmass,mj1-mH.Themeasuredratioindiffer- entbinsofmj1mHisusedinthefit(redsolidline),exceptintheregionaround mj1mH=0,whichcorrespondstothesignalregion(bluetriangularmarkers).The fittedfunctionisinterpolatedtoobtainRp/finthesignalregion.Thehorizontalbars onthedatapointsindicatethebinwidths.(Forinterpretationofthecoloursinthe figure(s),thereaderisreferredtothewebversionofthisarticle.)

double-b tagger selection, Rp/fNpass/Nfail,i.e.the“pass-fail ra- tio”.Theyieldintheantitagregion(ineachmjj,redbin)couldthen bescaledby Rp/f toobtainanestimateofthebackgroundnormal- ization inthesignal region.However, thereis asmallcorrelation betweenthedouble-b taggerdiscriminatorandmj1,whichistaken intoaccountbymeasuring thepass-failratio Rp/f asafunctionof mj1.Thesignalfractionwasfoundtobelessthan103intheside- bandregionsusedtoevaluate Rp/f,assumingasignalcrosssection

σ

(pp→XHHbbbb)of10 fb.

The Rp/ffortheLLsignalregionismeasuredusingratioofthe numberofeventsinthe“LL,passing”and“LL,failing”sidebandre- gions, asdefined in Table 1.Likewise, the Rp/f for the TT signal regionusestheratioofthenumberofeventsinthe“TT,passing”

tothe“TT,failing”sidebandregions.ThevariationofRp/fasafunc- tionofmj1 ineachmj1sidebandisfittedwithaquadraticfunction.

Thefittothepass-failratioisinterpolatedtotheregionwheremj1 lieswithintheH jetmasswindowof105–135 GeV.Analternative fitusingathirdorderpolynomialwas foundtogivethesamein- terpolatedvalueofRp/fintheHiggsjetmasswindow.Everyevent in theantitagregionisscaled by thepass-failratio evaluatedfor themj1 ofthat event,to obtainthebackground predictioninthe signalregion.

Fig.5showsthequadraticfitinthemj1 sidebandsofthepass- fail ratio Rp/f as a function ofmj1, as obtained in the data. The backgroundpredictionusingthismethod,alongwiththenumber ofobservedeventsinthesignalregionisshowninFig.6.

(6)

Fig. 6.Thereducedmass distributionsmjj,red for theLL(upper)and TT(lower) signalregioncategories.Thepointswithbarsshowthedata,thehistogramwith shaded band shows the estimated background and associated uncertainty. The mjj,redspectrumforthebackgroundisobtainedbyweightingthemjj,red spectrum intheantitagregionbytheratioRp/fofFig.5.Thesignalpredictionsforabulk gravitonofmass1000 GeV,areoverlaidforcomparison,assumingacrosssection σ(ppXHHbbbb)of10 fb.Thelastbinsofthedistributionscontainall eventswithmjj,red>3000 GeV.Thedifferencesbetweenthedataandthepredicted background,dividedbythedatastatisticaluncertainty(dataunc.)asgivenbythe Garwoodinterval [76],areshowninthelowerpanels.

Forresonancemassesof1200 GeV andabove,thebackground estimation is improved by simultaneously fitting a parametric model for the background and signal to the data in the signal andtheantitagregions formjj,red1100 GeV.Inthefit,theratio Rp/f obtainedfromthesidebandsisusedtoconstrain therelative numberofbackground eventsin thetwo regions. Toaccount for possible Rp/fdependenceonmjj,redathighmjj,red values,the Rp/f obtainedfromthefitsshowninFig.5isalsoparametrizedasalin- earfunctionofmjj,red.Thesignalnormalizationisunconstrainedin thefit,while theuncertaintiesintheparameters ofthe functions used to model the background and Rp/f are treated asnuisance parameters. For the background modelling, a choice among an exponentialfunction Nea mjj,red,a “levelled exponential” function Nea mjj,red/(1+a b mjj,red),anda“quadraticlevelled exponentialfunc- tion”Ne[−a mjj,red/(1+a b mjj,red)]−[−c m2jj,red/(1+b c m2jj,red)] wasmade,using aFisher F-test [77]. Ataconfidencelevel of95%,thelevelledex- ponentialfunctionwasfoundtobeoptimal. Sincethebackground shapes in the signal regions, as predicted using the antitag re-

gions,werefoundtobesimilar(Fig.6),theparametricbackground modellingwas tested usingthe antitagregion inthe databefore applyingittothesignalregion.

The simultaneous fits to the antitag and the signal regions are shown in Figs. 7 and 8, respectively, using the background modelonly.Thesearelabelledas“post-fit”curveswiththesignal region background yields constrained to be Rp/f times the back- ground yields from the antitag regions. The “pre-fit” curves, ob- tained by fitting the antitagandthe signal regions separately to thebackground-onlymodel,withthebackgroundeventyieldsun- constrained,arealsoshownforcomparison.Inthepost-fitresults, the Rp/fdependenceonmjj,redwasfoundtobenegligible.

Amongthefourfittedregions,correspondingtotheantitagand thesignalregionsintheLLandTTcategories, theeventswiththe highestvalueofmjj,redoccur intheantitagregionoftheLLcate- gory,ataroundmjj,red=2850 GeV. Asthe parametricbackground model is only reliable within the range of observed events, the likelihoodis onlyevaluated uptomjj,red=3000 GeV.Thisresults inatruncationofthesignaldistributionforresonanceshavingmX of2800 GeV andabove,withsignalefficiencylossesincreasingto 30%formX=3000 GeV,asshowninFig.4.

Closuretestsofthebackgroundestimationmethodswere per- formed using simulated multijet samples withsignals of various crosssections.Thetestsindicatedagoodconsistencybetweenthe expectedandtheassumedsignalstrengths.

5. Systematicuncertainties

The following sources ofsystematicuncertainty affectthe ex- pectedsignalyields. Noneoftheseleadtoa significantchangein thesignalshape.

Trigger response modelling uncertainties are particularly im- portant formjj,red<1200 GeV,where thetriggerefficiency drops below99%.Ascalefactorisappliedtocorrectforthedifferencein efficiencyobservedbetweenthe dataandsimulation.Thecontrol triggerusedtomeasurethisscalefactorrequiresasingle AK4jet withpT>260 GeV,andittooissubjecttosomeinefficiencywhen mjj,rediscloseto750 GeV,becauseofadifferencebetweenthejet energyscaleusedinthetriggerandthatusedintheofflinerecon- struction.Thisinefficiencyismeasuredusingsimulations,andhas anassociatedtotaluncertaintyofbetween1%and15%.

Thejetenergyscaleandresolutionuncertaintyisabout1% [63, 64].Thejetmassscaleandresolution,and

τ

21selectionefficiency data-to-simulation scale factor are measured using a sample of mergedW jetsinsemileptonictt events.Thecorrespondinguncer- taintiesareextrapolatedtoahigher pT rangethanthatassociated withtt events,usingsimulations.Acorrectionfactorisappliedto account forthe difference in the jet shower profile of W→qq and H→bb decays, by comparing the ratio of the efficiency of H and W jets using the pythia 8 and herwig++ shower gener- ators. The jet mass scale and resolution has a 2% effect on the signal yields becauseof a changeinthe meanof theH jet mass distribution. The

τ

21 selection efficiency uncertainty amounts to a +30/26% change in the signal yields. The uncertainty in the H tagging correction factor is in the range 7–20% depending on theresonancemassmX.The double-b taggerefficiencyscalefac- toruncertainty isabout2–5%,depending onthe double-b tagger requirementthreshold andjet pT, andis propagated to the total uncertaintyinthesignalyield.

Theimpact ofthePDFsandthetheoretical scaleuncertainties areestimatedtobe0.1–2%,usingthePDF4LHCprocedure [50],and affecttheproductofthesignalacceptanceandtheefficiency.The PDF and scale uncertainties have negligibleimpact on the signal mjj,red distributions.Additionalsystematicuncertaintiesassociated

(7)

Fig. 7.Thereducedmassmjj,reddistributionsintheantitagregionfortheLL(left)andTT(right)categories.Theblackmarkersarethedatawhilethecurvesshowthepre-fit andpost-fitbackgroundshapes.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as givenbytheGarwoodinterval [76],areshowninthelowerpanels.

Fig. 8.Thereducedmassmjj,red distributionsinthesignalregionfortheLL(left)andtheTT(right)categories.Theblackmarkersarethedatawhilethecurvesshow thepre-fitandpost-fitbackgroundshapes.Thecontributionofbulkgravitonsofmasses1600and2500 GeV inthe signalregionareshownassumingacross section σ(ppXHHbbbb)of10 fb.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as givenbytheGarwoodinterval [76],areshowninthelowerpanels.

withthepileupmodelling(2%)andtheintegratedluminosityde- termination(2.5%) [78],areappliedtothesignalyield.

Themainsource ofuncertaintyforthe multijetbackgroundin theregion mjj,red<1200 GeV is duetothe statisticaluncertainty in the fit to the Rp/f ratio performed in the H jet mass side- bands. This uncertainty, amounting to 2.6% for the LL, and 6.8%

for the TT signal categories, is fully correlated between all bins ofaparticularestimate.Furthermore,thestatisticaluncertaintyin the antitag region is propagated to the signal region when the estimate is made. This is uncorrelated from bin to bin,and the Barlow–Beeston Lite [79,80] method is used to treat the bin-by- bin statistical uncertainty in the data. These uncertainties affect both the shape of the background in the mjj,red distribution and thetotalbackgroundyield.

For mjj,red1200 GeV, the overall background uncertainty is obtainedfrom the uncertainty in the four simultaneous fits per- formed for the antitag andthe signal regions in the LL andthe

Table 2

Summaryofsystematicuncertaintiesinthesignalandbackgroundyields.

Source Uncertainty (%)

Signal yield

Trigger efficiency 1–15

H jet energy scale and resolution 1 H jet mass scale and resolution 2

H jetτ21selection +30/26

H-tagging correction factor 7–20 Double-b tagger discriminator 2–5

Pileup modelling 2

PDF and scales 0.1–2

Luminosity 2.5

Background yield

Rp/ffit 2.6 (LL category) 6.8 (TT category)

TT categories. The dependenceof Rp/f onmjj,red isaccountedfor, althoughthiswasfoundtobenegligible.

AcompletelistofsystematicuncertaintiesisgiveninTable2.

(8)

Fig. 9.Thelimitsforthespin-0radion(upper)andthespin-2bulkgraviton(lower) models.Theresultfor mX<1200 GeV usesthebackgroundpredictedusingthe controlregions,whileformX1200 GeV thebackgroundisderivedfromacom- binedsignalandbackgroundfittothedatainthecontrolandthesignalregions.

Thepredictedtheoreticalcrosssectionsforanarrowradionorabulkgravitonare alsoshown.

6. Results

AsshowninFigs.6and8,forthesignalregions,theobserved mjj,red distribution is consistent with the estimated background.

Theresultsare interpreted intermsof upperlimitsontheprod- uct of the production cross sections andthe branching fractions

σ

(pp→X)B(X→HH→bbbb)forradionandbulkgravitonofvar- iousmasshypotheses.Theasymptoticapproximationofthemod- ifiedfrequentist approachforconfidence levels,takingtheprofile likelihoodasateststatistic [81–83],isused.Thelimitsareshown inFig.9fora narrowwidth radionorabulk graviton. Theseare comparedwiththe theoretical valuesofthe productof thecross sectionsandbranchingfractionsforthe benchmarks

κ

/MPl=0.5 and R=3 TeV, where the narrow width approximation for a signal is valid, and where the corresponding HH decay branch- ing fractions in the mass range of interest are 10 and 23%, for thegraviton andtheradion,respectively [13].Theexpectedlimits onthebulkgraviton aremorestringentthanthoseontheradion becauseof thehigher efficiencyofthe |

η

(j1,j2)| separationre- quirementfortheformersignal.

The upperlimits on the productionof the cross sectionsand branchingfractionliesin therange126–1.4 fb fora narrowreso- nanceX ofmass 750<mX<3000 GeV.Assuming R=3 TeV, a bulkradionwithamassbetween970and1400 GeV isexcludedat 95%confidencelevel,exceptina smallregion closeto1200 GeV, wheretheobservedlimit is11.4 pb,thetheoreticalpredictionbe- ing11.2 pb.

7. Summary

A search for a narrow massive resonance decaying to two standardmodelHiggsbosonsisperformedusingtheLHCproton–

proton collision data collected at a centre-of-mass energy of 13 TeV by theCMS detector,and corresponding to an integrated luminosityof35.9 fb1.Thefinalstateconsistsofeventswithboth Higgs bosons decaying to b quark–antiquark pairs, which were identifiedusingjetsubstructureandb-taggingtechniquesapplied to large-area jets. The data are found to be consistent withthe standard model expectations, dominated by multijet events. Up- perlimitsaresetontheproductsoftheresonantproductioncross sections ofa Kaluza–Klein bulk graviton anda Randall–Sundrum radion, and their branching fraction to HH→bbbb. The limits range from 126 to 1.4 fb at 95% confidence level for bulk gravi- tonsandradionsin themassrange 750–3000 GeV.Forthe mass scale R=3 TeV, a radionof mass between970 and1400 GeV (except in a small region close to 1200 GeV) is excluded. These limitson the bulk graviton andthe radiondecaying to a pair of standardmodelHiggsbosonsarethemoststringenttodate,over themassrangeexplored.

Acknowledgements

WecongratulateourcolleaguesintheCERNacceleratordepart- ments for the excellent performance of the LHC and thank the technicalandadministrative staffsatCERN andatother CMS in- stitutes for their contributions to the success of the CMS effort.

Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses.

Finally, we acknowledge the enduring support for the construc- tionandoperation oftheLHC andtheCMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);

MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN- CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin- land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun- gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy);

MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei);ThEP- Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro- gramme and the European Research Council and Horizon 2020 Grant,contract No. 675440 (EuropeanUnion);the Leventis Foun- dation;the A. P. Sloan Foundation; the Alexandervon Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pourlaFormationàlaRecherchedansl’Industrieetdansl’Agricul- ture (FRIA-Belgium); the Agentschapvoor Innovatie door Weten- schap en Technologie (IWT-Belgium); the Ministry of Education, YouthandSports(MEYS)oftheCzechRepublic;theCouncilofSci- enceandIndustrialResearch,India;theHOMINGPLUSprogramme of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund, theMobilityPlusprogramme oftheMinistryofScienceandHigherEducation,theNationalSci- ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/

(9)

B/ST2/02861,Sonata-bis2012/07/E/ST2/01406; the NationalPrior- itiesResearchProgrambyQatar NationalResearchFund;thePro- grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF;

theRachadapisekSompotFundforPostdoctoralFellowship,Chula- longkornUniversityandtheChulalongkornAcademicintoIts 2nd CenturyProjectAdvancement Project(Thailand);theWelchFoun- dation,contractC-1845;andtheWestonHavensFoundation(USA).

References

[1] ATLASCollaboration,ObservationofanewparticleinthesearchfortheStan- dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)01,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214.

[2] CMSCollaboration,Observationofanewboson atamassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin ppcollisionsat

s=7 and8TeV,J.HighEnergyPhys.06(2013)081,https://

doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] D. deFlorian,J.Mazzitelli,Higgsboson pair productionat next-to-next-to- leadingorderinQCD,Phys.Rev.Lett.111(2013)201801,https://doi.org/10. 1103/PhysRevLett.111.201801,arXiv:1309.6594.

[5] L.Randall,R.Sundrum,Alargemasshierarchyfromasmallextradimension, Phys. Rev.Lett. 83(1999) 3370,https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.

[6] W.D.Goldberger,M.B.Wise,Modulusstabilizationwithbulkfields,Phys.Rev.

Lett.83(1999)4922, https://doi.org/10.1103/PhysRevLett.83.4922,arXiv:hep- ph/9907447.

[7] C.Csaki,M.Graesser,L.Randall,J.Terning,Cosmologyofbranemodelswith radion stabilization,Phys. Rev.D62(2000)045015, https://doi.org/10.1103/ PhysRevD.62.045015,arXiv:hep-ph/9911406.

[8] C.Csaki,M.L.Graesser,G.D.Kribs,Radiondynamicsandelectroweakphysics, Phys. Rev.D63 (2001) 065002,https://doi.org/10.1103/PhysRevD.63.065002, arXiv:hep-th/0008151.

[9] H.Davoudiasl,J.L.Hewett,T.G.Rizzo,PhenomenologyoftheRandall–Sundrum gaugehierarchymodel,Phys.Rev.Lett.84(2000)2080,https://doi.org/10.1103/ PhysRevLett.84.2080,arXiv:hep-ph/9909255.

[10] O.DeWolfe,D.Z.Freedman,S.S.Gubser,A.Karch,Modelingthefifthdimen- sionwithscalarsandgravity,Phys.Rev.D62(2000)046008,https://doi.org/ 10.1103/PhysRevD.62.046008,arXiv:hep-th/9909134.

[11] K.Agashe,H.Davoudiasl,G.Perez,A.Soni,WarpedgravitonsattheLHCand beyond,Phys.Rev.D76(2007)036006,https://doi.org/10.1103/PhysRevD.76. 036006,arXiv:hep-ph/0701186.

[12] G.F.Giudice,R.Rattazzi,J.D.Wells,Graviscalarsfromhigherdimensionalmet- ricsandcurvatureHiggsmixing,Nucl.Phys.B595(2001)250,https://doi.org/ 10.1016/S0550-3213(00)00686-6,arXiv:hep-ph/0002178.

[13]A.Oliveira,Gravityparticlesfromwarpedextradimensions,areview.Parti KKgraviton,arXiv:1404.0102,2014.

[14] G.C.Branco,P.M.Ferreira,L.Lavoura,M.N.Rebelo,M.Sher,J.P.Silva,Theory andphenomenologyoftwo-Higgs-doubletmodels,Phys.Rep.516(2012)01, https://doi.org/10.1016/j.physrep.2012.02.002,arXiv:1106.0034.

[15] A. Djouadi, The anatomy ofelectroweak symmetrybreaking. Tome II: the Higgsbosonsinthe

Figure

Fig. 1. The soft-drop mass (upper), the N-subjettiness τ 21 (middle), and the double-b tagger discriminator (lower) distributions of the selected AK8 jets
Fig. 2. The jet separation | η ( j 1 , j 2 )| (left) and the reduced dijet invariant mass m jj,red (right) distributions
Fig. 3. The signal selection efficiencies for the bulk graviton and radion models for different mass hypotheses of the resonances, shown for the LL and the TT signal event categories
Fig. 5. The pass-fail ratio R p/f of the leading p T jet for the LL (upper) and TT (lower) signal region categories as a function of the difference between the soft-drop mass of the leading jet and the Higgs boson mass, m j 1 - m H
+6

References

Related documents

Title Measurement of the electroweak production of Zγ and two jets in proton-proton collisions at √s=13  TeV and constraints on anomalous quartic gauge couplings Citation

In quantum field theories containing elementary scalar fields, such as the Standard Model of electroweak interactions containing the Higgs particle, mass of the scalar field is not

No significant excess above the Standard Model background expectation is observed, and upper limits on Higgs boson production are derived, excluding the presence of a Higgs boson with

Examples of the results for the SM Higgs and MSSM Higgs available from the data corresponding to an integrated luminosity of 35 pb −1 at LHC (taken from [16].. and

The most significant SM background processes for the pair production and hadronic decays of MSSM charged and neutral Higgs bosons are those which lead to genuine bbbb, tttt, bbτ τ,

In models with singlet neutrino in large extra dimensions and with 2 Higgs doublets, the decay of charged Higgs into left-handed τ can be significantly enhanced, with O ( 1 )

 The transient and the late time attractor tachyon dark energy: Can we distinguish it from quintessence.. Amna

CMS Collaboration, Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment.. CMS