• No results found

High density matter at RHIC

N/A
N/A
Protected

Academic year: 2022

Share "High density matter at RHIC"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

#$%&'&(&)*$""+,-.(

/ 0 12%

345&&&&) &&6$ 2

&22& 7&%&% 89:4;&#$%

&'&)&&&&< && &&

<& & &=&< &&&9:4&&&

&&&&)&& &&&%

&&&&&&)&% &%

% &2 2& & 2 &&2 &

&& ) %& & 6 9& )&2&&&)

&<&2 .&&2)&&

2&% & 62.&%&%2&

%<& 2& &&& &9:4

3$ 2 > &%& % > &%& %

!

" # $$ % $ &'

$$( )*+

)+ *!

$$,-."

/

% *!$ !

) 0 !12&34+* /

!

% $ "

&' 5 ,6." *

7$$)%+$$78

!" 8$57$$

* ,9. * ! 8

%$$ " $

5$

" :

$*"

#8 % &' $ 7

$ ,;." # -*

(2)

$ $ *8 8> &'"

57 $

7$" 1

?@

$ 7 ;

" 4 $

-A= B $$

C)<6+

DA

3BE

" 7!

7$5"

% 7

,;." % !

*$ !" #$ !

* 7"

5

D 8 7 7

7% 7$

%

,<."

$ % )&34+ $*

7-D 77,A." $%8

$ 7! !

7$$ F $

77" &34

*

$ 77 8

,G."

! *%$$

7 875" H $

7"

7 7$ $

7$"

* $ $ $" I

7$$*$5

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/T c

ε /T 4 ε SB /T 4

3 flavour 2+1 flavour 2 flavour

'&& & 2

&%& &&).&.

?%345@A

7.& & .

&%& % 2

&2 & )2 &20 &

=&&83BC;28

;

D.& 8

; & D.

&8;& 2

(3)

" &34*@7

%$7!7$"

% 5 77

$,J."

?$!$

7 ! % 6" $ *

7 - * )8

+ " $

$ &34$" 5

* @ " #

5*

) +

87" I

*>$F$7

" 7>

@8 * >

!@8" 7) K $

!"""+ $ $

"

$87%5

5?!3I:E4-=$"

-JJJ$)+?!: 78

$ * 7 %$$

$ $$"

* %7 5

$$" *7>$0

$277)

º63BE+ @* 7

" * K*

(K*

*$$7$$$ "

*9"G! "

>57$7*7$

ÆÆ

C6D6DD3B

C=DD3B

$ $ $ * $"

88$$-D

%5 5 I:E45%$

$77*"

%@*$

7 *

" % $ 7

" ,-D."

' $ L 6DD 3B C 6-D

7 6 !@" H $ 7 $

(4)

K

)C+

L $

* -D

" $ L =DD3B

6-D

*7G@" '@

L ADM"

5 * $

* 5 ,--. ) % 9+" 4I:N 5 %

( *8$!

! > $ *

@ *

* " $ *

K7!I

$ 87!" K

*8

*> $ " ? *

%

* " 4?$* 8

8$ 7

! >" 4I:N 7

;=D7*4?? *-DD"

7-JJJ"

L

ÆÆ

C-9D3B 6DDDL@ L )-=M

@+

ÆÆ

C 6DD 3B 6DD-16" $

7GD 7

L - 7

L " *

$*77

!,-6-9."

: 57K $ 7 8

@ 5$8)02+)02+"

5F $$

" %7 )7

7+ 7

8" $ % 7 $

12:00 o’clock

2:00 o’clock

4:00 o’clock 6:00 o’clock

8:00 o’clock PHOBOS

10:00 o’clock BRAHMS

STAR

PHENIX RHIC

AGS LI NAC BOOSTER

TA NDEMS Pol. Proton Source

High Int. Proton Source

Design Parameters:

Beam Energy = 100 GeV/u No. Bunches = 57 No. Ions /Bunch = 1× 10 9 T store = 10 hours L ave = 2 × 10 26 cm -2 sec -1 9 GeV/u

Q = +79

1 MeV/u Q = +32

HEP/NP µ g-2

U-line BAF (NASA)

" 7&%&%89:4;& <&

#$%&'&

(5)

**802

@8*"

$77*

7*5" $ 7 )+

7

)+7

7$L

*

37$" 737

L $1

) L+ " $

$%)H15+8FL8

" * L 5"

* 77$ $ 5" H

7 " 7

7

8"

$"

4$ 7

$

* *

78

F" 7*$

" #

%F

"

9"-

7 &34 $

7 "" $ $

88

$

ÆÆ

7$" #57$

$$$

$ " 7 * $

$ *7" *

7 7 3 4 "

777$

ÆÆ

" $ $ 7

7 7 $

77$E

)8+" H

75

$7&')+"

#;4?7,-;.*$

7

" L

" *

* $ * $

(6)

η

-5 0 5

η /d ch dN

0 100 200 300

400 19.6 GeV

η /d ch dN

0 200 400 600

130 GeV η /d ch dN

0 200 400 600 800

200 GeV 0- 6%

6-15%

15-25%

25-35%

35-45%

45-55%

PHOBOS Au+Au

! %&&%&9:4

@"A

"#

ÆÆ

C-9D3B;6DD

"

# ;57 D $

57 " 8

% *7

O-,-=."

$8$

7" 7$ P@ : )P:+

5*8F7*

*

*

,-<." H%

*%=7$4?7*

5 7

9<M

ÆÆ

C -9D3B ;=M 6DD 3B $,-A."

7,-G-J.Q

7 $

%@

*

" *

7 7 7*

$ 7 5

$ * F

7*7" I5 7

(7)

% *%$ $ *

"

$

$ 7 *

-DD77"

77 @ 7 7!

$

" * 7$ 4I:N

7

ÆÆ

C-9D 6DD3B,6D. 8$" $

%

*

$8

E

DJ3B"

ÆÆ C-9D

6DD3B"I L

ÆÆ

C ;G 47L47 -A"6 3B $ $ 8

$$$

$ )

%<+"

?K! 7$$,6-.!

$$ (

C -

)-+

*

$

$$ ! - E * $$

" #

6M L

6DD3B4I:N?K!$$7 ==3BE

C - E" 4

47L47

ÆÆ

C -A6 3B 96 3BE

,66."

$*$$

5 $ $ 7$"

&'$$$

7 DADD9=3BE

,69.%$$4"

part

N

0 100 200 300 400

/2 〉 part N 〈 / η /d ch dN

0 1 2 3 4

Two-Component Fit

Phobos Au+Au

200 GeV 130 GeV 19.6 GeV pp

(GeV) s NN

10 2

> (GeV) ch >/<dN T <E

0 0.5 1

10

PHENIX Preliminary NA49

WA98 E814/877

42 & .

&& &

&&

ÆÆ

E"+"-

BF C:G.

#G 7 % &). & =&

&&<&@"A

%

ÆÆ

H &&%&&B

C9:48 @A;

(8)

9"6

$$ 8

* $ @ *

5 $"

$ 7 8 $

7*$-J<D,6;." 8

$!$ $ 7"

* ( )+ $

%7@8

)+ 7

@ 7 >*" 7

7 > ""

%* 7$

77 " $

F * 5>*"

77%5

@8" I 77

" $@ 7

77$78

" $7$

@8" ? 7

$ $ $ 7 $ 77 7$

" ' 7* 9DM 7

$$,6=."

!7$ 7 4 ,6<6A.

*,6G6J." 7*>*

) + $

7" *

7K7"

H87$@8$8

7$7$7$) //"+88

02" #A*

* )+ % -9D

3B )+ 8 6DD3B L ,6G."

* * %

7

;- B

ÆÆ

C -9D 3B 6J B 6DD

3B"@8$7$%

8 7-A=B

$%"

%>$!

@8*5

* $* $ 7$

" 7$

*( @8>*

"" 5 $" @ $

* $ >* * $ 5

C

(9)

)

L

+

*>*7*Q

7*"

7 58

C

L

*

>* $

$ ! @8" @ *

5

$

* * " 8

%5>*$*%77$"

7$$$

7 7 $ * ,9D. ) %G+"

5$ K $$

Ratios

10 -2 10 -1 1

=130 GeV s NN

=200 GeV s NN

STAR PHENIX PHOBOS BRAHMS

Model prediction for = 29 MeV µ b

T = 177 MeV, Model re-fit with all data

= 41 MeV µ b

T = 176 MeV, /p

p Λ / Λ Ξ / Ξ Ω / Ω π - / π + K - /K + K / - π - p / π - K * /h - φ /h - Λ /h - Ξ /h -

× 10 π -

Ω / p /p K - /K + K - / π - φ /K - p / π - Ω /h -

0 × 50

'&0 &)9:4< &&&

ÆÆ

E"-B&&& &)&E",I

E"I8 @!A; 92&0 4 &)9:4&

&

ÆÆ

EB&@!A

0 1 2 3

10 4 10 2 10 0 10 2

p T (GeV/c) (1 /2 π ) d N /d y p T dp T (G e V 2 )

. . π

K /10

p /100

Central Au+Au @ 200 GeV RHIC data preliminary

PHENIX STAR PHOBOS BRAHMS Hydro Kolb, Rapp, PRC 67 044903 (2003)

# 4 & &% & &

B & F 9:4<.

& 7% & &

@-A

(10)

$$ $ *8

27*2@,9-." @

$$ 7* 5>*$@88

7$% " 7 $8

$" H 7@8 I:E4

$

C-661-6AB

CD;GDD-,96.%

$ @8

--D B 7 >*

CD"==1D"< $,99."

9"9

$777

"*@*

7 ,-9-=."

! ( 7$E7$8$D"<1

-"D" $87$$7

$"#7$7O==$

7"

7 7

"

$$ 7 *

>*" 77 *

$$ 7"

$ $ $ 7 ="=

3BE

5 $ $ &'

7$="

*8 )7$ ?*1* +

8" 5

@8*%*$

" $ $$

5 $ $55

$"

ÆÆ

%558

*7"

R *

;D3B Æ7

7 77" K

7*" H

7 ) 7*$+

$%KK$"

Æ$

F$7)"" +

7 K

$ 7 " H

" H*7*

(11)

*

;3BE$K

L"

*$$?K!,9;.

7 " $

!1

7

K %5

" *! *

77 $

77 ,9=19A." $ $ $

" H %

7$,9G.7

*$

%"

$ *

$***(

"

;"-

"

L *

;3BE$$$A=M

$K7$$

L>,9A."

%(

)

+C

)6+

*

8 $ 1

$

"

)

+@7$L

L " $

)

+ $ 7 7$ F * * *

)

+F)+

* * " F 7

$ ) L+"

)

+

)

+ *

7

8@ L "

)

+5

)

+

*%$"

#

* -9D3B 7$74I:N ,;-." 6DD

3B77*

$ * 7 " # J *

$ L L

6DD 3B 7$ ,9J. 5

C -6 3B" *

4I:N ,;D." # -D *

)

+

)

+ " ;1= 7 8

7

**!$

7

(12)

(GeV/c) p T

0 2 4 6 8 10 12

-2 dy (GeV/c) T N/dp 2 ] d evt N T p π 1/[2

10 -16 10 -14 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 1

10 2 π 0 spectra:

× 2 min.bias

10 -1

× 0-10%

10 -2

× 10-20%

10 -3

× 20-30% -4

× 10 30-40%

10 -5

× 40-50%

10 -6

× 50-60%

10 -7

× 60-70% -8

× 10 70-80%

10 -9

× 80-92%

STAR √s NN = 200 GeV PHENIX

Au+Au, p+p h + + h- --- 2

0 2 4 6 8 10 12

10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10 10 2 10 3

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10 10 2

0-5%

5-10% /5 10-20% /10 20-30% /15 30-40% /20 40-60% /25 60-80% /30 p+p (/20 for left axis)

Ed 3 NSD /dp 3 (mb/Ge V 2 )

1/(2 π p T ) d 2 N/dp T d η | =0 ((Ge V /c) -2 )

p T (GeV/c)

$ %2%&&& 798&;

& C:/J 82&; % %& &&

@-+A

(GeV/c) p T

0 2 4 6 8 10

AA R

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(0-10%) π 0

Central

(80-92%) π 0

Peripheral

d 2 N/dp T d η /〈 N bin 〉 (central) R CP = --- d 2 N/dp T d η /〈 N bin 〉 (peripheral) 0.1

1

0-5%/40-60%

Participant scaling

Binary Collision scaling

pQCD-I pQCD-II Saturation

0 2 4 6 8 10 12

0.1 1

0-5%/60-80%

p T (GeV/c)

=& & F &

E B

'&0 8; 2 &) && /.

& &&& & & && @-+A 92&0

8;

& 7

&.&.& < & @A & & &

& &&& D& && % &

)&2&

=3BE" $$ K

$ 7

7

)

+

)

+ $" :

$7"

)

+

<3BE

ÆÆ

C -9D3B

,;-.7 * 75$=

-63BE" H

F77$

L 6

; 3BE ,;6.

(13)

7,;9." *

;3BE ,;;. 7 %$7*

"

8 %-D *

=

3BE7$7&',;=;<." &'8

* 8 F ,;A.

$$"

,;G. 7" 8

% &'7

" K

,;J.

)

+

6=

-63B"8

8*75

7" %878

)

+*

K$,=D.

"

;"6

" !

HK 7$5

Æ$

*

" #K L 7

5 $ 7 8K

7

$" 7!887! 8K $ 7$

$ F(

77$ *7!"

*@F)7!887!+

F $ 8K )8

+ ,=-." # --*@ 7

7*L6DD3B"

7>*""@$

8 8K F 7 "

7 @ 7 L

L " $

LK8!

L >*" 5*

@@7 L(

C

L)-L6

)6O++ )9+

@7 L

$

!

63BE 7$@

77!% 8K O6"

(14)

(radians) φ

-3 -2 -1 0 12 3

) φ ∆ dN/d( TRIGGER 1/N 0

0.1 0.2

0.3 STAR 200 GeV | ∆ η |<1.4

60-80% Au+Au flow: v2 = 24.4%

pp data + flow

(radians) φ

-3 -2 -1 0 12 3

) φ ∆ dN/d( TRIGGER 1/N 1.4

1.6

|<1.4 η

STAR 200 GeV |

Central 0-5% Au+Au flow: v2 = 7.4%

pp data + flow

D &&2F .

&F&?)868-;;@"A '&0C

92&0 4&

N part 0 50 100 150 200 250 300 350 400

) 2 φ ∆ , 1 φ ∆ ( AA I

0 0.5 1 1.5 2

(trig)<6 GeV/c | < 0.75, 4<p T φ

|

(trig)<6 GeV/c | > 2.25, 4<p T φ

|

N part 0 50 100 150 200 250 300 350 400

(trig)<4 GeV/c | < 0.75, 3<p T φ

|

(trig)<4 GeV/c | > 2.25, 3<p T φ

|

% &&82E&;.2

8; $.&.$ 8); 2 & @"A '&0 722

BK 92&0 722-BK

%--*>*

" )9+" 8! % * 7$ "

)9+ ! )7 $ *

7*+" 7!887!

)+*77$>*K8!

L " *!

)+7" H!7( 7!8

87!K$L"

$F7$7>*

@!L

L (

)O

O

+C

Ê

!

¾

)O+,

)-L6

)6O++.

Ê

!

¾

)O+

);+

;AG !

(15)

# -6*

$ *

" 8!7$

7 ( 8

" 7!887! L

L $ " #

*@* *

*$87"

B F $7 %-6"

7 8

7!887!"

7 L L 7

87!887!!7 *7$

$7* 7 "

* 7%7$ L "

;"9

*7

L

(

7$;1=

*

* =

-63BE"

:8**K8!

;

3BE"

?!887!*8*!

"

*$

$ $ $ K

$@*

7" $

* 7!887! " *

$ 7 * *

$77"

!

*8!" $

L *2 % @ "

6DD9 * $ $ ) L+ %

* 5@ " L

$ * 6DD; 7$ * $ *

$"

5$ $ 8

7 $ * 7*

(16)

$"

!77 8

$ $ $$

$ @@ "

$$ !*$

" %,J."

4I:N$,=6.

$%!S,=9." $*

7 "

"!#

!4R7R77"

@"A L44ILC "!"--8"+,;

@A < M928;8&;

@-A M92ND$.K""---

@A MM.K+""

@A M$#"++8;

@A O.&K+"+"

@,A 5#%$.K""

@!A MB2N&.K-

@+A LN:#IP%!,"8"+;

@"A 79$#-8;

@""A 79&%&:%4/< &!$$

&'"(8-;

@"A C23$I&&"$#8;

@"-A C23$I&&8-;

@"A ###$.<K""

@"A 7(-++8-;

@"A 5MD%I % ""8";

@",A ###$"+"8;

@"!A ML/$MM&M7 %!$+8";

@"+A 5MD%/'% %",+8";

@A #D%$!8-;

@"A L5#$"8"+!-;

@A 7 -!"8"++;

@-A M$#"++8;

@A 9:2 ""8"+;

@A (:D"8"+++;

@A C#.ID2:L& %!"8"+++;

@,A #&&!+"8";

@!A C#.ID2 %#"8";

@+A #&&)#"-8;

@-A CM99+-8-;

@-"A / L$(:D!#8"++-;

(17)

@-A I')""8-;

@--A B#"+8-;

@-A L5#$/9I'#.C.!K+.7:*

@-A IBICP %!"""8"++;

9# %"!,,8"++;

@-A 9#5Q#BO$%% -,8;

@-,A JN2IB #"!8"++;

JN2#-"8"++!;

@-!A /N2JN2 #$"-"8;

%"-"8;

@-+A L .<K-"

@A .<K-

@"A M< ##-"8;

4 #$-"8;

@A L$%$C2&23$I&&-)" ""8;

@-A C.<K-!

@A ###$.<K-"

@A JN2.&K-">%& &4& .

&

EB

E BK

@A &%IB #$-"8;

@,A 5&$,8"+,+;

C#& #8"++;

@!A 5MD%/'%'I' %+-8-;

5MD%%& &

@+A 9'&%LC&C&%#7 $#""+8-;

@A MB &4BOJ+8-;

@"A 4 $ !-8-;

@A M< ##"+-8;

@-A L2.<K+"

References

Related documents

In this energy region, hadron transverse mass spectra first show soften- ing until SPS energies, and re-hardening may emerge at RHIC energies.. Since hadronic matter is expected to

Vector meson spectral function (left) for different temperatures at vanishing baryon density as well as (right) for vanishing baryon density and normal nuclear matter density

The solenoidal tracker at RHIC (STAR) is a large acceptance tracking detector designed primarily to measure hadronic particle production in high energy nuclear collisions.. The

With higher statistics measurements in the year 2001 at the full RHIC energy of p s NN = 200 GeV, a measurement of the η meson will also be performed, providing the basis for

New data from RHIC and direct photon production results from CERN have been shown that point out the field’s future direction: analysis of partonic matter at T &gt; 200

The diverging beam at the exit of the high energy accelerating tube is focused by the magnetic quadrupole triplet, and then analyzed by the 90 Æ bending magnet.. The analyzed beam

Since the most important issue being the beam loss at higher energies, high beam quality will be the deciding factor for the architecture of the LINAC between 4.5 MeV and 100 MeV..

The desired RI beam with an energy of 1.0 keV/u and q = A = 1 = 16 will be separated in the low energy beam transport line after the ECRIS and accelerated to about 90.0 keV/u in