• No results found

Dynamic modelling and control of two link flexible arm robotic manipulator

N/A
N/A
Protected

Academic year: 2022

Share "Dynamic modelling and control of two link flexible arm robotic manipulator"

Copied!
42
0
0

Loading.... (view fulltext now)

Full text

(1)

DYNAMIC MODELLING AND CONTROL OF TWO LINK FLEXIBLE ARM ROBOTIC

MANIPULATOR

NATRAJ MISHRA

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI

JANUARY 2020

(2)

ยฉ Indian Institute of Technology Delhi (IITD), New Delhi, 2020

(3)

DYNAMIC MODELLING AND CONTROL OF TWO LINK FLEXIBLE ARM ROBOTIC

MANIPULATOR

by

NATRAJ MISHRA

Department of Mechanical Engineering

Submitted

in fulfilment of the requirements of the degree of Doctor of Philosophy to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

JANUARY 2020

(4)

Dedicated to Goswami Shree Tulsidas ji

เคจเค—เคฐ เฅค เคฐ เคฐ เคฐ เฅฅ เค—เคฐ เคฐ เคฐ เฅค เค— เค…เคจ เฅฅ

( เคฐ เคฐ เคจ : เคฐ )

เค… : เค— เคธเคฌ เฅค เคธ , เค— , เคธ เค—

เคฌ เคฌ , เค† เฅค

(5)

i

Certificate

This is to certify that the thesis entitled โ€œDynamic Modelling and Control of Two Link Flexible Arm Robotic Manipulatorโ€ being submitted by Mr. Natraj Mishra to the Indian Institute of Technology Delhi for the award of the degree of Doctor of Philosophy is a record of bonafide work carried out by him under our supervision. This thesis is in conformity with the rules and regulations of the Indian Institute of Technology Delhi, New Delhi. We further certify that the thesis has attained a standard required for the degree of Doctor of Philosophy. The research reported and the results presented in the thesis have not been submitted, in part or full to any other institute or university for the award of any other degree or diploma.

Dr. S.P. Singh Professor

Department of Mechanical Engineering Indian Institute of Technology Delhi New Delhi-110016, India

Dr. (Late) B.C. Nakra Professor Department of Mechanical Engineering Indian Institute of Technology Delhi New Delhi-110016, India

Date:

Place: New Delhi

(6)

ii

Acknowledgements

เคตเคฐเฅเคฃเคพเคจเคฃเคฎเคฐเฅเคพเคธเค‚เค˜เคฃเคจเคฃเค‚ เคฐเคธเคฃเคจเคฃเค‚ เค›เคจเฅเคฆเคธเคฃเคฎเคชเคฟ เฅค

เคฎเค‚เค—เคฒเคฃเคจเคฃเค‚ เคš เค•เคฐเฅเคฃเคพเคฐเฅŒ เคตเคจเฅเคฆเฅ‡ เคตเคฃเคฐเฅเฅ€เคชเคตเคจเคฃเคฏเค•เฅŒ เฅฅ(เคถเฅเคฐเฅ€ เค—เฅ‹เคธเฅเคตเคฃเคฎเฅ€ เคฐเฅเฅเคฒเคธเฅ€เคฆเคฃเคธเคœเฅ€, เคถเฅเคฐเฅ€เคฐเคฃเคฎเคšเคฐเคฐเคฐเฅเคฎเคฃเคจเคธ : เคฌเคฃเคฒเค•เคฃเคฃเฅเคก)

I invoke Lord Ganesh: well-wisher of all and Goddess Sarasvati who provides knowledge about alphabets and all literary skills. My ability to persevere and ability to grasp knowledge is solely due to them. I pay tribute to my teachers including my parents and circumstances faced by me, who have shaped my destiny.

เคตเคจเฅเคฆเฅ‡ เคฌเฅ‹เคงเคฎเคฏเค‚ เคชเคจเคคเฅเคฏเค‚ เค—เฅเคฐเค‚ เคถเค‚เค•เคฐเคฐเฅ‚เคชเคฟเคฐเฅเคฎเฅ เฅค

เคฏเคฎเคฃเคชเคถเฅเคฐเคฐเฅเฅ‹ เคชเคฟ เคตเค•เฅเคฐเฅ‹เคฝเคชเคฟ เคšเคจเฅเคฆเฅเคฐเคƒ เคธเคตเคพเคคเฅเคฐ เคตเคจเฅเคฆเฅเคฏเคฐเฅเฅ‡ เฅฅ(เคถเฅเคฐเฅ€ เค—เฅ‹เคธเฅเคตเคฃเคฎเฅ€ เคฐเฅเฅเคฒเคธเฅ€เคฆเคฃเคธเคœเฅ€, เคถเฅเคฐเฅ€เคฐเคฃเคฎเคšเคฐเคฐเคฐเฅเคฎเคฃเคจเคธ : เคฌเคฃเคฒเค•เคฃเคฃเฅเคก)

I salute to my teachers who are the embodiments of omniscient, eternal Lord Shiva whose asylum glorifies even the curved moon. It is because of Prof. (Late) B.C. Nakra that I embarked upon this mission of Ph.D. I was one of the youngest research scholar co- supervised by him. He put complete faith upon me. I have tried my best to live up to his expectations. It is because of him only; I could get the noblest person- Prof. S.P. Singh as my Ph.D supervisor. My research on Dynamic modelling and control of Two-Link Flexible arm robotic manipulator has enhanced my knowledge about robotics, vibrations, controls, finite elements and modelling of mechanical systems. It has increased my craving for doing further research in these areas. I hope that in coming future I shall strive for increasing my knowledge and utilize this knowledge for the benefit of my nation and society.

I thank my colleagues at my work place: UPES, Dehradun for their kind support. I thank the research scholars: Dr. Faisal Rahmani, Dr. Parmanand Nandihal, Mr. Anvesh Reddy, Mr.

Dinesh Kochar and Mr. Dharmender for providing me valuable suggestions and inputs for

(7)

iii

improving my work. For validation of mathematical model, an experimental set-up was built at Vibrations laboratory in IIT Delhi. This could not have been accomplished without the hardwork of Kumarmangalam Mishra (Intern from Thapar University, Patiala) and support of Mr. K. N. Madanasundaran (Technical Supdt., Vibration Research Laboratory, IIT Delhi) and my SRC panelists especially Prof. J.K. Dutt (Professor, IIT Delhi). This acknowledgement is incomplete if I do not express my gratitude towards my wife Mrs. Neelam Mishra. It is because of her patience and unconditional support that I could lead my research work towards completeness. There were moments when I needed great psychological help. During these tough times, my friend- Mr. Laxmi Narayan Joshi and my Chacha ji- Shri Jitender Kumar Pandey have always mentored me. At the last, I would ask for forgiveness from my supervisor for any kind of negligence or indiscipline caused by me.

เคฐเฅเคธเฅเคฎเคฃเคคเฅเคชเฅเคฐเคฐเฅเคฎเฅเคฏ เคชเฅเคฐเคชเคฐเฅเคงเคฃเคฏ เค•เคฃเคฏเค‚

เคชเฅเคฐเคธเคฃเคฆเคฏเฅ‡ เคคเฅเคตเคฃเคฎเคฟเคฎเฅ€เคถเคฎเฅ€เคกเฅเคฏเค‚ เฅค เคชเคฟเคฐเฅเฅ‡เคต เคฟเฅเคคเฅเคฐเคธเฅเคฏ เคธเค–เฅ‡เคต เคธเค–เฅเฅเคƒ

เคชเคชเฅเคฐเคฏเคƒ เคชเคชเฅเคฐเคฏเคฃเคฏเคฃเคฟเคพเคชเคธ เคฆเฅ‡เคต เคธเฅ‹เคขเฅเค‚ เฅฅ (เคถเฅเคฐเฅ€เคฎเคฆเฅเคญเค—เคตเคฆเฅเค—เฅ€เคฐเฅเคฃ, เค…เคงเฅเคฏเคฃเคฏ เฅงเฅง, เคถเฅเคฒเฅ‹เค• เฅชเฅช) You are the God worshipable by all beings. Therefore, I bow before you with utmost respect and beg for your benevolence. Just like a father bears the impudence of his son, or a friend withstands his pragmatic friend, or an affectionate husband endures his beloved faithful wife;

in the same way, You please shower your kindness upon me and tolerate all my flaws.

Natraj Mishra

(8)

iv

Abstract

Robots are finding new applications in various fields. In industries, the increased rate of production within stipulated period of time along with high quality of products has become a prime requirement. This is achieved by increasing the speed of operation. This increase in speed of operation of robots combined with use of light weight structures causes problems of vibrations of links which are the major cause of positional inaccuracies at the end-effector.

Furthermore, less power consumption is another area of concern, which may be achieved by decreasing the inertia of robots. This results in lightweight links which are prone to vibrations. The present work is based on minimizing the vibrations of these lightweight robots, also known as flexible robots. The thesis focuses upon the dynamic modelling and control of a Two-Link Flexible robot having two revolute joints. For this, firstly a mathematical model of the flexible robot is prepared using Lagrangian dynamics. The mathematical model thus obtained involves coupling between the rigid and flexible motions exhibited by the flexible robot. The rigid motion is due to the motion of joints and is responsible for change in configuration of the robot while the flexible motion is due to the vibration of links. The links undergo two types of vibrations: flexural/ bending vibrations and torsional vibrations. The vibration analysis of the flexible links is done using both assumed modes method and finite elements method. A robotic system is an inertia-variant system because its configuration changes with time. As a result, the natural frequencies of the system change with time. The effect of this time-dependency of natural frequencies of links on Joint and Tip responses is taken care of during mathematical modelling. On the other hand, while using finite elements method this effect of time-dependency of natural frequencies is taken care of by continuously updating the mass and stiffness matrices of the system. Furthermore, it is also easy to take care of boundary conditions during โ€˜finite element analysisโ€™. The

(9)

v

control of vibrations of flexible links is achieved by using passive damping technique using viscoelastic material combined with active damping technique using piezo-ceramics. While using passive damping technique, the phenomenon of viscoelasticity is modelled using Kelvin-Voigt elements. The active vibration control of flexible links is achieved with the help of piezoelectric sensors and actuators applied in segmented fashion on the links. Direct velocity feedback is used. A hypothesis is presented for active vibration control of torsional vibrations along with the simulation results. To significantly reduce the vibration of flexible links, both the vibration control techniques are used together to achieve hybrid damping.

Since, a robot is to be used for the performance of specified tasks, trajectory planning is requirement. In the present work, trajectory planning is done using both โ€˜point-to-pointโ€™ and

โ€˜continuous pathโ€™ trajectories. It is shown that through proper planning of trajectory, tip vibrations, initial jerk and joint torque requirements can be reduced significantly. While making a robot follow a certain trajectory with minimum deviation from the desired path, control techniques are required. A new control technique based on Coupled-error dynamics control technique is also presented and found quite effective. The performance of this control technique is compared with computed-torque and robust control schemes in terms of error in path followed, effect of uncertainties within the system like mass uncertainty and link flexibility and control torque output. It is found that the performance of newly developed control scheme is better than computed-torque control and close to robust control.

(10)

vi

เคธเคพเคฐเคพเคพเค‚เคถ

เค†เคงเฅเคชเคจเค• เคธเคฎเคฏ เคฎเฅ‡เค‚ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เคชเคตเคชเคฟเคจเฅเคจ เค•เฅเคทเฅ‡เคคเฅเคฐเฅ‹เค‚ เคฎเฅ‡เค‚ เคฟเฅ‹เคฐเฅเคฃ เคฟเฅˆ เฅค เคฐเฅ‹เคฌเฅ‹เคŸ เค•เคฃ เคชเฅเคฐเคฎเฅเค– เค‰เคฟเคฏเฅ‹เค— เค‰เคฏเฅ‹เค—เฅ‹เค‚ เคฎเฅ‡เค‚ เคฟเฅ‹เคฐเฅเคฃ

เคฟเฅˆเฅค เค‰เคฏเฅ‹เค— เค•เฅเคทเฅ‡เคคเฅเคฐ เค•เฅ€ เคฎเฅเค–เฅ เค†เคตเคถเฅเคฏเค•เคฐเฅเคฃ เคฟเฅ‹เคฐเฅเฅ€ เคฟเฅˆ - เคคเฅเคตเคฐเคฐเคฐเฅ เคฆเคฐ เคธเฅ‡ เคชเคจเคงเคฃเคพเคฐเคฐเคฐเฅ เคธเคฎเคฏเคฃเค‚เคฐเฅเคฐเคฃเคฒ เคฎเฅ‡เค‚ เค‰เคšเฅเคš เค•เฅ‹เคชเคŸ เค•เฅ‡

เค—เฅเคฐเฅเคตเคคเฅเคคเคฃ เคตเคฃเคฒเฅ‡ เค‰เคคเฅเคชเคฃเคฆเฅ‹เค‚ เค•เคฃ เค‰เคคเฅเคชเคฃเคฆเคจเฅค เค‡เคธ เค†เคตเคถเฅเคฏเค•เคฐเฅเคฃ เค•เฅ€ เคฟเฅ‚เคชเคฐเฅเคพ เค‰เคคเฅเคชเคฃเคฆเคจ เค•เฅ€ เค—เคชเคฐเฅ เคฎเฅ‡เค‚ เคตเฅƒเคฆเฅเคงเคฟ เคฆเฅเคตเคฃเคฐเคฃ เค•เฅ€ เคœเคฃ เคธเค•เคฐเฅเฅ€ เคฟเฅˆเฅค เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ€ เคฌเฅเฅ€ เคนเฅเคˆ เค—เคชเคฐเฅ เค•เฅ‡ เคซเคฒเคธเฅเคตเคฐเฅ‚เคฟ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ€ เคฟเฅเคœเคฃเค“เค‚ เคฎเฅ‡เค‚ เค•เคฎเฅเคชเคจ เค•เฅ€ เคธเคฎเคธเฅเคฏเคฃ เค‰เคคเฅเคชเคจเฅเคจ เคฟเฅ‹

เคœเคฃเคฐเฅเฅ€ เคฟเฅˆ เคœเฅ‹เคชเค• เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‡ เค…เค‚เคฐเฅ-เคชเฅเคฐเฅ‡เคฐเค• เคฎเฅ‡เค‚ เคชเฅเคฐเคธเฅเคฐเฅเคฃเคฟเคจเคฃ เคธเคฎเฅเคฌเคจเฅเคงเฅ€ เค…เคถเฅเคฆเฅเคงเคฟเคฏเฅ‹เค‚ เค•เฅ‡ เค‰เคคเฅเคชเคจเฅเคจ เคฟเฅ‹เคจเฅ‡ เค•เคฃ เคชเฅเคฐเคฎเฅเค– เค•เคฃเคฐเคฐเฅ เคฟเฅˆเฅค

เคฟเคฐเคจเฅเคคเฅ, เค‡เคธเค•เฅ‡ เคฟเคฐเคฐเคฐเฅเคฃเคฎเคธเฅเคตเคฐเฅ‚เคฟ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ€ เคฟเฅเคœเคฃเคฏเฅ‡เค‚ เคฟเคฒเค•เฅ€ เคฟเฅ‹ เคœเคฃเคฐเฅเฅ€ เคฟเฅˆเค‚ เคœเฅ‹เคชเค• เค•เคฎเฅเคชเคจ เค‰เคจเฅเคฎเฅเค– เคฟเฅ‹เคฐเฅเฅ€ เคฟเฅˆเค‚เฅค เค‡เคธเคธเฅ‡

เคฐเฅ‹เคฌเฅ‹เคŸ เคฎเฅ‡เค‚ เคชเฅเคฐเคธเฅเคฐเฅเคฃเคฟเคจเคฃ เคธเคฎเฅเคฌเคจเฅเคงเฅ€ เค…เคถเฅเคฆเฅเคงเคฟเคฏเคฃเคพเค เค”เคฐ เคฌเฅ เคœเคฃเคฐเฅเฅ€ เคฟเฅˆเค‚เฅค เคฏเคฟ เคชเฅเคฐเคธเฅเคคเฅเคฐเฅ เคถเฅ‹เคงเค•เคฃเคฏเคพ เค‡เคจ เคฟเคฒเค•เฅ€ เคฟเฅเคœเคฃเค“เค‚ เคตเคฃเคฒเฅ‡

เคฐเฅ‹เคฌเฅ‹เคŸ เค…เคฐเฅเคฃเคพเคฐเฅเฅ เคฒเคšเฅ€เคฒเฅ‡ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‡ เค•เคฎเฅเคชเคจ เค•เฅ‹ เคจเฅเคฏเฅ‚เคจเคฐเฅเคฎ เค•เคฐเค•เฅ‡ เคชเคฆเค–เคฃเคจเฅ‡ เคฟเคฐ เค†เคงเคฃเคฐเคฐเคฐเฅ เคฟเฅˆเฅค เคฏเคฟ เคถเฅ‹เคงเคชเฅเคฐเคฌเค‚เคง เคเค• เคชเคฆเฅเคต-เคฟเฅเคœ เคฒเคšเฅ€เคฒเฅ‡ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‡ เค—เคคเฅเคฏเคฃเคคเฅเคฎเค• เคชเฅเคฐเคชเคฐเฅเคฐเฅ‚เคฟเคฐเฅ เคเคตเค‚ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคฟเคฐ เค•เฅ‡เค‚เคชเคฟเคฐเฅ เคฟเฅˆเฅค เค‡เคธ เคฐเฅ‹เคฌเฅ‹เคŸ เคฎเฅ‡เค‚ เคฆเฅ‹ เคธเค‚เคชเคงเคฏเคฃเคพเค เคฟเฅˆเค‚

เคชเคœเคจเคฟเคฐ เค•เฅ‡เคตเคฒ เคฟเคฐเคฐเค•เฅเคฐเคฎเคฐเฅ เคฐเฅ‚เคฟเฅ€ เค—เคชเคฐเฅ เคฟเฅ€ เคธเค‚เคฟเคต เคฟเฅˆเฅค เค‡เคธเค•เฅ‡ เคชเคฒเค เคธเคตเคพเคชเฅเคฐเคฐเฅเคฎ เคฒเคšเฅ€เคฒเฅ‡ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เคฃ เคฒเคฃเค—เฅเคฃเค‚เคœ เค•เฅ€

เค—เคคเฅเคฏเคฃเคคเฅเคฎเค• เคฟเคฟเคชเคฐเฅ เคฆเฅเคตเคฃเคฐเคฃ เคเค• เค—เคชเคฐเฅเคฐเฅเฅ€เคฏ เคชเฅเคฐเคชเคฐเฅเคฐเฅ‚เคฟ เคฐเฅเฅˆเคฏเคฃเคฐ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เค‡เคธ เคชเฅเคฐเค•เคฃเคฐ เคชเฅเคฐเคฃเคชเฅเคค เคนเฅเค เค—เคชเคฐเฅเคฐเฅเฅ€เคฏ เคชเฅเคฐเคชเคฐเฅเคฐเฅ‚เคฟ เคฎเฅ‡เค‚ เคฒเคšเฅ€เคฒเฅ‡ เคฐเฅ‹เคฌเฅ‹เคŸ เคฆเฅเคตเคฃเคฐเคฃ เคชเฅเคฐเคฆเคชเคถเคพเคฐเฅ เค…เคจเคฎเฅเคฏ เคเคตเค‚ เคจเคฎเฅเคฏ เค—เคชเคฐเฅเคฏเฅ‹เค‚ เค•เคฃ เคฏเฅเค—เฅเคฎเคจ เคถเคฃเคชเคฎเคฒ เคฟเฅˆเฅค เค…เคจเคฎเฅเคฏ เค—เคชเคฐเฅ เค•เฅ€

เค•เคฃเคฐเค• เคฟเฅˆเค‚- เคธเค‚เคชเคงเคฏเฅ‹เค‚ เค•เฅ€ เค—เคชเคฐเฅเคฏเคฃเคพเค เค”เคฐ เคฏเคฟ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‡ เคชเคตเคจเฅเคฏเคฃเคธ เคฎเฅ‡เค‚ เคฟเคฐเคฐเคตเคฐเฅเคพเคจ เค•เฅ‡ เคชเคฒเค เคชเคœเคฎเฅเคฎเฅ‡เคฆเคฃเคฐ เคฟเฅˆเฅค เคœเคฌเคชเค• เคจเคฎเฅเคฏ เค—เคชเคฐเฅ เคฟเฅเคœเคฃเค“เค‚ เคฎเฅ‡เค‚ เค•เคฎเฅเคชเคจ เค•เฅ€ เคตเคœเคฟ เคธเฅ‡ เคฟเฅ‹เคฐเฅเฅ€ เคฟเฅˆ เฅค เคฟเฅเคœเคฃเค“เค‚ เคฎเฅ‡เค‚ เคฆเฅ‹ เคชเฅเคฐเค•เคฃเคฐ เค•เฅ‡ เค•เคฎเฅเคชเคจ เคฟเฅ‹เคฐเฅเฅ‡ เคฟเฅˆเค‚ : เคฌเค‚เค•เคจ เคธเฅ‡ เค‰เคคเฅเคชเคจเฅเคจ เค•เคฎเฅเคชเคจ เค”เคฐ เคฎเคฐเฅ‹เฅœ เคธเฅ‡ เค‰เคคเฅเคชเคจเฅเคจ เค•เคฎเฅเคชเคจเฅค เค‡เคจ เคฒเคšเฅ€เคฒเฅ€ เคฟเฅเคœเคฃเค“เค‚ เคฎเฅ‡เค‚ เคฟเฅ‹เคจเฅ‡ เคตเคฃเคฒเฅ‡ เค•เคฎเฅเคชเคจ เค•เคฃ เคชเคตเคถเฅเคฒเฅ‡เคทเคฐเฅ 'เค•เคฆเฅเคงเคฟเคฐเฅ

เค†เคตเฅƒเคชเคคเฅเคค เคฟเคฟเคชเคฐเฅ' เคเคตเค‚ 'เคฟเคฐเคฐเคชเคฎเคฐเฅ เค…เคตเคฏเคต เคฟเคฟเคชเคฐเฅ', เคฆเฅ‹เคจเฅ‹เค‚ เค•เฅ‡ เคฆเฅเคตเคฃเคฐเคฃ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค 'เค•เคฆเฅเคงเคฟเคฐเฅ เค†เคตเฅƒเคชเคคเฅเคค เคฟเคฟเคชเคฐเฅ' เค•เคฃ เค‰เคฟเคฏเฅ‹เค— เค•เคฐเคฐเฅเฅ‡ เคธเคฎเคฏ เคฐเฅเค‚เคคเฅเคฐ เค•เฅ‡ เคถเคฃเคธเฅ€ เคธเคฎเฅ€เค•เคฐเคฐเฅเฅ‹เค‚ เค•เฅ‹ เค‡เคธ เคชเฅเคฐเคฟเคฃเคต เค•เฅ‹ เคธเคฆเฅเคงเคฎเฅเคฎเคชเคฒเคฐเฅ เค•เคฐเคจเฅ‡ เค•เฅ‡ เค‰เคฟเคฐเคฃเคจเฅเคค เคชเฅเคฐเคฃเคชเฅเคค เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เค‡เคธ เคฟเคฟเคชเคฐเฅ เค•เคฃ เคฒเคšเฅ€เคฒเฅ€ เคฟเฅเคœเคฃเค“เค‚ เค•เฅ‡ เคชเคฒเค เค‰เคฟเคฏเฅ‹เค— เค•เคฐเคฐเฅเฅ‡ เคธเคฎเคฏ เคฏเคฐเฅเคฃเคฐเฅเคพ เคธเฅ€เคฎเคฃ เคถเคฐเฅเฅ‹เค‚ เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคฆเฅ‚เคธเคฐเฅ€ เคฐเฅเคฐเคซ 'เคฟเคฐเคฐเคชเคฎเคฐเฅ เค…เคตเคฏเคต เคฟเคฟเคชเคฐเฅ' เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เค•เคฐเคฐเฅเฅ‡ เคธเคฎเคฏ เคชเฅเคฐเคฃเค•เฅƒเคชเคฐเฅเค• เค†เคตเฅƒเคชเคคเฅเคคเคฏเฅ‹เค‚ เค•เฅ€ เค‡เคธ เคธเคฎเคฏ-เคชเคจเคฟเคพเคฐเคฐเฅเคฃ เค•เคฃ เคงเฅเคฏเคฃเคจ เคฐเฅเค‚เคคเฅเคฐ เค•เฅ‡ เคœเฅœเคคเฅเคต เคเคตเค‚ เค•เค เฅ‹เคฐเคฐเฅเคฃ เคธเคฎเฅเคฌเคจเฅเคงเฅ€ เค†เคตเฅเคฏเฅ‚เคฟเฅ‹เค‚ เค•เฅ‹ เคธเคฐเฅเคฐเฅ เคฐเฅ‚เคฟ เคธเฅ‡ เค…เคฏเคฐเฅเคจ เค•เคฐเคฐเฅเฅ‡

(11)

vii

เคนเฅเค เคฐเค–เคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เค‡เคธเค•เฅ‡ เค…เคชเคฐเฅเคฐเคฐเค•เฅเคค 'เคฟเคฐเคฐเคชเคฎเคฐเฅ เค…เคตเคฏเคต เคชเคตเคถเฅเคฒเฅ‡เคทเคฐเฅ' เค•เฅ‡ เคธเคฎเคฏ เคธเฅ€เคฎเคฃ เคถเคฐเฅเฅ‹เค‚ เค•เคฃ เคงเฅเคฏเคฃเคจ เคฐเค–เคจเคฃ เคฟเฅ€

เคธเคฐเคฒ เคฟเฅ‹เคฐเฅเคฃ เคฟเฅˆเฅค เคชเคฆเฅเคต-เคฟเฅเคœ เคฒเคšเฅ€เคฒเฅ‡ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‡ เค—เคชเคฐเฅเคฐเฅเฅ€เคฏ เคชเฅเคฐเคชเคฐเฅเคฐเฅ‚เคฟ เค•เฅ€ เคฟเฅเคชเคฟ เคธเคฃเคชเคฟเคคเฅเคฏ เคฎเฅ‡เค‚ เค‰เคฟเคฒเคฌเฅเคง เคชเฅเคฐเคชเคฐเฅเคซเคฒเฅ‹เค‚ เคฆเฅเคตเคฃเคฐเคฃ เค•เฅ€ เค—เคฏเฅ€ เคฟเฅˆ เค”เคฐ เคธเคฃเคฐเฅ เคฟเฅ€ เคฎเฅ‡เค‚ เคชเฅเคฐเคฏเฅ‹เค—เฅ‹เค‚ เคฆเฅเคตเคฃเคฐเคฃ เคฟเฅ€เฅค เคฒเคšเฅ€เคฒเฅ€ เคฟเฅเคœเคฃเค“เค‚ เค•เฅ€ เค•เคฎเฅเคชเคจ เค•เคฃ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคชเคตเคธเฅเค•เฅ‹-เค‡เคฒเคฃเคฆเฅเคงเคฟเค•

เคฟเคฆเคฃเคฐเฅเคพ เค•เฅ‡ เค‰เคฟเคฏเฅ‹เค— เคธเฅ‡ เค‰เคคเฅเคชเคจเฅเคจ 'เคชเคจเคฆเฅเคงเคฟเคฏ เค…เคตเคฎเค‚เคฆเคจ เคชเฅเคฐเคชเคตเคชเคง' เคฆเฅเคตเคฃเคฐเคฃ เคเคตเค‚ เคฟเฅ€เคœเฅ‹เคธเฅ‡เคฐเคฃเคชเคฎเค• เค•เฅ‡ เคชเฅเคฐเคฏเฅ‹เค— เคธเฅ‡ เค‰เคคเฅเคชเคจเฅเคจ

'เคธเคชเค•เฅเคฐเคฏ เค…เคตเคฎเค‚เคฆเคจ เคชเฅเคฐเคชเคตเคชเคง' เคฆเฅเคตเคฃเคฐเคฃ เคชเฅเคฐเคฃเคชเฅเคค เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค 'เคชเคจเคฆเฅเคงเคฟเคฏ เค…เคตเคฎเค‚เคฆเคจ เคชเฅเคฐเคชเคตเคชเคง' เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เค•เคฐเคฐเฅเฅ‡ เคธเคฎเคฏ 'เคชเคตเคธเฅเค•เฅ‹-เค‡เคฒเคฃเคฆเฅเคงเคฟเคชเคธเคŸเฅ€' เคจเคฃเคฎเค• เคฐเฅเคฅเฅเคฏ เค•เคฃ เคชเฅเคฐเคชเคฐเฅเคฐเฅ‚เคฟเคฐเฅ เค•เฅ‡เคฆเฅเคงเคฟเคจ-เคตเฅ‰เค‡เคŸ เค…เคตเคฏเคตเฅ‹เค‚ เคฆเฅเคตเคฃเคฐเคฃ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคฒเคšเฅ€เคฒเฅ€

เคฟเฅเคœเคฃเค“เค‚ เค•เคฃ เคธเคชเค•เฅเคฐเคฏ เค•เคฎเฅเคชเคจ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคฟเฅ€เคœเฅ‹เค‡เคฒเฅ‡เคฆเฅเคงเคฐเคฟเค• เคธเฅ‡เค‚เคธเคธเคพ เคเคตเค‚ เคเค•เฅเคšเฅเคเคŸเคธเคพ เค•เฅ‹ เคฟเฅเคœเคฃเค“เค‚ เคฟเคฐ เค–เคฆเฅเคงเคฃเฅเคกเคฐเฅ เคชเคตเคงเคฃเคจ เคฆเฅเคตเคฃเคฐเคฃ เค…เคจเฅเคชเฅเคฐเคฏเฅเค•เฅเคค เค•เคฐ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคชเฅเคฐเคคเฅเคฏเค•เฅเคท เคตเฅ‡เค— เคชเฅเคฐเคชเคฐเฅเคฟเฅเคชเคฟ เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคฎเคฐเฅ‹เฅœ เคธเฅ‡ เค‰เคคเฅเคชเคจเฅเคจ เค•เคฎเฅเคชเคจ เค•เฅ‡ เคธเคชเค•เฅเคฐเคฏ เค•เคฎเฅเคชเคจ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคฟเฅ‡เคฐเฅเฅ เคเค• เคฟเคฐเคฐเค•เคฟเคจเคฃ เคชเฅเคฐเคธเฅเคคเฅเคฐเฅ เค•เฅ€ เค—เคฏเฅ€ เคฟเฅˆเฅค เคฒเคšเฅ€เคฒเฅ€ เคฟเฅเคœเคฃเค“เค‚ เคฎเฅ‡เค‚ เค•เคฎเฅเคชเคจ เค•เฅ‹

เค…เคชเคฟเคตเฅเคฏเค‚เคœเค•เคฐเฅเคฃเคฟเฅ‚เคตเคพเค• เค•เคฎ เค•เคฐเคจเฅ‡ เค•เฅ‡ เคชเคฒเค เคฆเฅ‹เคจเฅ‹เค‚ เคฟเฅ€ เคชเฅเคฐเค•เคฃเคฐ เค•เฅ€ เค•เคฎเฅเคชเคจ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคชเฅเคฐเคชเคตเคชเคงเคฏเฅ‹เค‚ เค•เคฃ เคเค•เคธเคฃเคฐเฅ เคชเฅเคฐเคฏเฅ‹เค— เค•เคฐ เคธเค‚เค•เคฐ เค…เคตเคฎเค‚เคฆเคจ เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคšเฅ‚เคพเคเคชเค•, เคเค• เคฐเฅ‹เคฌเฅ‹เคŸ เค•เคฃ เค‰เคฟเคฏเฅ‹เค— เคชเคจเคงเคฃเคพเคฐเคฐเคฐเฅ เค•เคฃเคฏเฅ‹เค‚ เค•เฅ‡ เคชเคจเคทเฅเคชเคฃเคฆเคจ

เคฟเฅ‡เคฐเฅเฅ เคฟเฅ‹เคฐเฅเคฃ เคฟเฅˆ, เคชเฅเคฐเค•เฅเคทเฅ‡เคฟเคฟเคฐเฅ เค†เคฏเฅ‹เคœเคจ เค…เคคเฅเคฏเคฃเคตเคถเฅเคฏเค• เคฟเฅˆเฅค เคชเฅเคฐเคธเฅเคคเฅเคฐเฅ เคถเฅ‹เคงเค•เคฃเคฏเคพ เคฎเฅ‡เค‚ เคชเฅเคฐเค•เฅเคทเฅ‡เคฟเคฟเคฐเฅเฅ‹เค‚ เค•เคฃ เค†เคฏเฅ‹เคœเคจ 'เคชเคฌเค‚เคฆเฅ-เคธเฅ‡- เคชเคฌเค‚เคฆเฅ' เคเคตเค‚ 'เค…เคชเคตเคฆเฅเคงเคฟเคจเฅเคจ เคฎเคฃเค—เคพ' เคชเฅเคฐเค•เฅเคทเฅ‡เคฟเคฟเคฐเฅ เคชเฅเคฐเคชเคตเคชเคงเคฏเฅ‹เค‚ เคฆเฅเคตเคฃเคฐเคฃ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคฏเคฟ เคชเฅเคฐเคฆเคชเคถเคพเคฐเฅ เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆ เคชเค• เค‰เคชเคšเคฐเฅ

เคชเฅเคฐเค•เคฃเคฐ เคธเฅ‡ เค†เคฏเฅ‹เคชเคœเคฐเฅ เคชเฅเคฐเค•เฅเคทเฅ‡เคฟเคฟเคฐเฅเฅ‹เค‚ เคฆเฅเคตเคฃเคฐเคฃ เคฟเฅเคœเคฃเคจเฅเคค เค•เคฎเฅเคชเคจเฅ‹เค‚, เคชเฅเคฐเคฃเคฐเค‚เคชเคฟเค• เคเคŸเค•เฅ‹เค‚ เคเคตเค‚ เคธเค‚เคชเคง เค†เค˜เฅ‚เคฐเฅเคพ เค†เคตเคถเฅเคฏเค•เคฐเฅเคฃเค“เค‚

เค•เฅ‹ เค…เคฐเฅเคพเคฟเฅ‚เคฐเฅเคพเคฐเฅเคฃ เคธเฅ‡ เค•เคฃเคฎ เคชเค•เคฏเคฃ เคœเคฃ เคธเค•เคฐเฅเคฃ เคฟเฅˆเฅค เคชเค•เคธเฅ€ เคฐเฅ‹เคฌเฅ‹เคŸ เค•เฅ‹ เคเค• เคชเคจเคชเคฟเคฐเฅ เคชเฅเคฐเค•เฅเคทเฅ‡เคฟเคฟเคฐเฅ เคฟเคฐ เคจเฅเคฏเฅ‚เคจเคฐเฅเคฎ เคชเคตเคšเคฒเคจ เคธเฅ‡ เคšเคฒเคฃเคจเฅ‡ เค•เฅ‡ เคชเคฒเค เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคชเฅเคฐเคชเคตเคชเคงเคฏเฅ‹เค‚ เค•เฅ€ เค†เคตเคถเฅเคฏเค•เคฐเฅเคฃ เคฟเฅ‹เคฐเฅเฅ€ เคฟเฅˆเฅค 'เค…เคชเคฟเค•เคชเคฒเคฐเฅ-เค†เค˜เฅ‚เคฐเฅเคพ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เคเคตเค‚ 'เคฟเฅเคฟ

เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เคชเฅเคฐเคชเคตเคชเคงเคฏเฅ‹เค‚ เค•เคฃ เคชเฅเคฐเคฏเฅ‹เค— เค‡เคธเฅ€ เคฟเฅ‡เคฐเฅเฅ เคชเค•เคฏเคฃ เคœเคฃเคฐเฅเคฃ เคฟเฅˆเฅค เคเค• เค…เคจเฅเคฏ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคชเฅเคฐเคชเคตเคชเคง : 'เคฏเฅเคฆเฅเคงเค—เฅเคฎเคฐเฅ-เคคเฅเคฐเฅเคชเคŸ เค—เคชเคฐเฅเค•เฅ€' เค•เคฃ เคฟเฅ€ เค‡เคธ เคชเฅเคฐเคธเฅเคคเฅเคฐเฅ เค•เคฃเคฏเคพ เคฎเฅ‡เค‚ เคชเฅเคฐเคฏเฅ‹เค— เคชเค•เคฏเคฃ เค—เคฏเคฃ เคฟเฅˆเฅค เคชเฅเคฐเคธเฅเคคเฅเคฐเฅ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ เคชเฅเคฐเคชเคตเคชเคง เค•เฅ‡ เคชเคจเคทเฅเคชเคฃเคฆเคจ เค•เฅ€ เคฐเฅเฅเคฒเคจเคฃ

'เค…เคชเคฟเค•เคชเคฒเคฐเฅ-เค†เค˜เฅ‚เคฐเฅเคพ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เคเคตเค‚ 'เคฟเฅเคฟ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เคตเฅเคฏเคตเคธเฅเคฐเฅเคฃเค“เค‚ เคธเฅ‡ เคฟเคฐเฅ เค…เคจเฅเคธเคฐเคฐเฅ เคฎเฅ‡เค‚ เคคเฅเคฐเฅเคชเคŸ, เคฟเคตเฅเคฏเคฎเคฃเคจ เค…เคชเคจเคชเคฟเคฐเฅเคฐเฅเคฃ เคต เคฟเฅเคœเคฃ เคจเคฎเฅเคฏเคฐเฅเคฃ เคœเฅˆเคธเฅ€ เค…เคชเคจเคชเคฟเคฐเฅเคฐเฅเคฃเค“เค‚ เค•เฅ‡ เคชเฅเคฐเคฟเคฃเคต เค”เคฐ เคชเคจเคฏเค‚เคคเฅเคฐเค• เค†เค˜เฅ‚เคฐเฅเคพ เค•เฅ€ เค†เคตเคถเฅเคฏเค•เคฐเฅเคฃเค“เค‚ เคœเฅˆเคธเฅ‡

เคฟเฅŒเคชเคฐเฅเค• เคšเคฐเฅ‹เค‚ เค•เฅ‡ เคฎเคฃเคงเฅเคฏเคฎ เคฆเฅเคตเคฃเคฐเคฃ เค•เฅ€ เค—เคฏเฅ€ เคฟเฅˆเฅค เคฏเคฟ เคฟเคฃเคฏเคฃ เคœเคฃเคฐเฅเคฃ เคฟเฅˆ เคชเค• เคจเคตเฅ€เคจเคฐเฅเคฃ เคธเฅ‡ เคชเคตเค•เคชเคธเคฐเฅ เค‡เคธ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ

เคตเฅเคฏเคตเคธเฅเคฐเฅเคฃ เค•เฅ€ เคชเคจเคทเฅเคชเคฃเคฆเคจ เค•เฅเคทเคฎเคฐเฅเคฃ 'เค…เคชเคฟเค•เคชเคฒเคฐเฅ-เค†เค˜เฅ‚เคฐเฅเคพ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เคธเฅ‡ เคฌเฅ‡เคฟเคฐเฅเคฐ เคฟเฅˆ เค”เคฐ 'เคฟเฅเคฟ เคชเคจเคฏเค‚เคคเฅเคฐเคฐเฅ' เค•เฅ‡ เคธเคฎเฅ€เคฟ เคฟเฅˆ เฅค

(12)

viii

Contents

Certificate ... i

Acknowledgements ... ii

Abstract ... iv

Contents ... viii

List of Figures ... xiv

List of Tables ... xxvii

Nomenclature ... xxx

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.1.1 Aim ... 2

1.2 Literature survey ... 2

1.2.1 Dynamic modelling using assumed modes method (AMM) ... 3

1.2.2 Dynamic modelling using finite elements method (FEM) ... 4

1.2.3 Comparison between AMM and FEM ... 5

1.2.4 Other approaches for dynamic modelling ... 6

1.2.5 Control strategies for vibration suppression ... 7

1.2.6 Optimization techniques ... 9

1.2.7 Passive and active control of vibrations of flexible links ... 10

1.2.7.1 Review on viscoelastic damping ... 10

(13)

ix

1.2.7.2 Review on active damping of vibrations ... 16

1.2.8 Trajectory control of robots ... 21

1.2.9 Conclusions from literature survey ... 22

1.2.9.1 Conclusions on passive and active vibration control ... 29

1.2.9.2 Conclusions from literature survey on trajectory control ... 30

1.2.10 Research gaps identified in the existing knowledge ... 30

1.2.11 Research Objectives ... 31

1.3 Organization of thesis ... 32

Chapter 2: Dynamic analysis using AMM ... 33

2.1 Introduction ... 33

2.2 Mathematical modelling ... 34

2.2.1 Assumed Modes Method ... 40

2.2.2 Calculation of excitation forces acting at the tips of the links ... 44

2.2.3 The Single-Link Flexible manipulator ... 51

2.3. Results... 57

2.3.1 Results on Single-Link Flexible manipulator ... 57

2.3.2 Results on Two-Link Flexible manipulator ... 58

2.3.3 Effect of time-varying frequency on joint and tip responses ... 72

2.4. Conclusions ... 75

Chapter 3: Dynamic analysis using FEM ... 78

3.1 Introduction ... 78

(14)

x

3.2 Mathematical Modelling ... 79

3.3 Discretization using Finite Elements Method... 82

3.4 Validation of mathematical model of Two-Link Flexible manipulator ... 88

3.5 Results... 89

3.5.1 Results using bending vibrations ... 90

3.5.1.1 Effect of coupling between Rigid and Flexible motions ... 90

3.5.1.2 Effect of gravity on tip response ... 131

3.5.1.3 Neglecting the effect of coupling between Rigid and Flexible motions (The Alternate Model) ... 137

3.5.2 Calculation of excitation forces acting at the tips of the links ... 138

3.5.3 Results using combined bending-torsion vibrations ... 145

3.5.4 Effect of vibrations on positional accuracy ... 148

3.5.5 Frequency analysis of undamped vibrations of Flexible Links ... 149

3.6 Comparison between AMM and FEM ... 152

3.7 Convergence study ... 155

3.8 Conclusions ... 157

Chapter 4: Vibration control using passive and active control methods ... 159

4.1 Introduction ... 159

4.1.1 Important features of the present work ... 160

4.2 Mathematical Modelling ... 161

4.2.1 Mathematical model of the Two-link Flexible manipulator ... 161

4.2.2 Mathematical modelling for hybrid vibration control ... 164

(15)

xi

4.2.2.1 The smart beam ... 164

4.2.2.2 The feedback control system ... 169

4.2.2.3 Formulation of Mass, Damping and Stiffness Matrices ... 172

4.2.3 Modelling of viscoelasticity present in the Links ... 174

4.2.3.1 Model representation for viscoelastic elements ... 174

4.2.3.2 Stored energy and rate of dissipation ... 177

4.2.3.3 Equivalent Maxwell Model... 178

4.2.3.4 Viscoelastic models ... 179

4.2.3.5 Law of conservation of energy for a viscoelastic element ... 183

4.2.3.6 Derivation of Damping matrix for Flexible Links ... 183

4.3 Active vibration control of torsional vibrations ... 184

4.4 Validation of mathematical model of active damping using piezoceramics ... 187

4.5 Results using viscoelastic, active and hybrid damping ... 191

4.5.1 Results using viscoelastic damping ... 193

4.5.2 Results using active damping (using piezo patches)... 197

4.5.2.1 Results based upon relative placements of piezo-sensors and piezo- actuators on links ... 197

4.5.2.2 Results based upon different values of PD gains used during active control of vibrations ... 202

4.5.3 Results using hybrid damping ... 204

4.5.4 Comments on Eigen Values ... 207

4.5.5 Basis for selection of control gains ... 208

4.6 Conclusions ... 209

(16)

xii

Chapter 5: Trajectory Control ... 211

5.1 Introduction ... 211

5.2 Mathematical Modelling ... 212

5.3 Control System Design ... 218

5.4 Results ... 223

5.4.1 Computed-Torque Control ... 223

5.4.2 Coupled-Error Dynamics Control ... 225

5.4.3 Robust Control ... 240

5.4.4 Continuous Path Trajectory Control ... 245

5.5 Trajectory Planning ... 248

5.6 Discussions and Conclusions ... 262

Chapter 6: Experimental Results ... 264

6.1 The Experimental Work... 264

6.1.1 Single Link Flexible manipulator ... 264

6.1.1.1 Free vibrations of single link flexible manipulator ... 266

6.1.1.2 Forced vibrations of single link flexible manipulator ... 270

6.1.2 Two Link Flexible Manipulator ... 276

6.1.2.1 Results for Two Link Flexible manipulator ... 279

6.1.3 Results using viscoelastic damping ... 283

6.1.3.1 Results for Single-Link Flexible Manipulator ... 283

6.1.3.2 Results for Two-Link Flexible manipulator ... 287

6.2 Conclusions ... 294

(17)

xiii

Chapter 7: Conclusions ... 295

7.1 Salient Contributions ... 295

7.2 Important Conclusions ... 296

7.3 Future recommendations ... 299

References ... 301

Appendix ... 322

Appendix-A... 323

Appendix-B ... 335

Appendix-C ... 338

FABRICATION DETAILS OF EXPERIMENTAL TEST SETUP ... 338

BIODATA ... 341

(18)

xiv

List of Figures

Fig. 2.1: Dynamic modelling of a Two-Link Flexible manipulator having two clamped-free

Euler-Bernoulli beams and two revolute joints. 35

Fig. 2.2: Calculation of effective inertias and excitation forces at the ends of the links (The coordinates of C.G. are e2x and e2y measured w.r.t the local frame X2-Y2 attached at Link-2.)

37 Fig. 2.3: Assignment of coordinate frames to a single flexible link manipulator system 51 Fig. 2.4: Tip deflection of a Single Link Flexible manipulator subjected to a constant

rotational speed 58

Fig. 2.5: Torque applied at Joint-1 59

Fig. 2.6: Torque applied at Joint-2 60

Fig. 2.7: Comparison of Joint-1 response 60

Fig. 2.8: Comparison of Joint-2 response 61

Fig. 2.9: Tip deflection of Link-1 obtained in the present case 61 Fig. 2.10: Tip deflection of Link-2 as obtained in the present case using boundary conditions

described by equations-(2.24) to (2.27). 62

Fig. 2.11: Tip deflection of Link-2 as obtained in the present case considering it close to a

free-free beam. 62

Fig. 2.12: Tip deflection of Link-2 as obtained by Habib and Korayem 63 Fig. 2.13: Joint-1 angle (input) for Flexible and Rigid manipulators 65 Fig. 2.14: Joint-2 angle (input) for Flexible and Rigid manipulators 65 Fig. 2.15: Comparison between joint torques of rigid and flexible manipulators (The flexible

links are supposed to vibrate in first mode of vibration) 68

(19)

xv

Fig. 2.16: Comparison between joint torques of rigid and flexible manipulators (The flexible links are supposed to vibrate in first two modes of vibration) 69 Fig. 2.17: Comparison between joint torques of rigid and flexible manipulators (The flexible links are supposed to vibrate in first three modes of vibration) 71 Fig. 2.18: Comparison of responses of Joint-1 for constant and time-varying natural

frequency cases 73

Fig. 2.19: Comparison of responses of Joint-2 for constant and time-varying natural

frequency cases 74

Fig. 2.20: Tip response of flexible link-1 for time-varying and constant natural frequency

cases 74

Fig. 2.21: Tip response of flexible link-2 for time-varying and constant natural frequency

cases 75

Fig. 3.1: Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and

torsional deformations. 79

Fig. 3.2: Dynamics modelling of Two-Link Flexible manipulator using two Space-frame

finite elements. 82

Fig. 3.3: Simulation results for manipulator with physical parameters described in Table 3.3 99 Fig. 3.4: Simulation results for manipulator with physical parameters described in Table 3.4

104 Fig. 3.5: Simulation results for manipulator with physical parameters described in Table 3.5.

109 Fig. 3.6: Simulation results for manipulator with physical parameters described in Table 3.6

114

(20)

xvi

Fig. 3.7: Simulation results for manipulator with physical parameters described in Table 3.7 119 Fig. 3.8: Simulation results for manipulator with physical parameters described in Table 3.8

125 Fig. 3.9: Simulation results for manipulator with physical parameters described in Table 3.9.

130 Fig. 3.10: Simulation results in presence of gravity for manipulator with physical parameters

described in Table 3.10 136

Fig. 3.11: Calculation of excitation forces at the ends of links (the alternate model) 138 Fig. 3.12: Simulation results using the alternate model (Physical parameters are as per Table

3.3.) 140

Fig. 3.13: Simulation results using the alternate model (Physical parameters are as per Table

3.4.) 141

Fig. 3.14: Simulation results using the alternate model (Physical parameters are as per Table

3.5.) 143

Fig. 3.15: Simulation results using the alternate model (Physical parameters are as per Table

3.6) 144

Fig. 3.16: Effect of vibration on positional accuracy of tip of Two-Link Flexible manipulator 148 Fig. 3.17: Variation of first four natural frequencies of the Two-Link Flexible manipulator

with change in configuration of the links 151

Fig. 3.18: Comparison between Joint-1 angles obtained by AMM and FEM based approaches 153

(21)

xvii

Fig. 3.19: Comparison between Joint-2 angles obtained by AMM and FEM based approaches 153 Fig. 3.20: Comparison between the tip deflections of Link-1 obtained by AMM and FEM

based approaches 154

Fig. 3.21: Comparison between the tip deflections of Link-2 obtained by AMM and FEM

based approaches 154

Fig. 3.22: Convergence study showing the effect of number of finite elements on slope rate of

tip of a Two-Link Flexible manipulator 155

Fig. 3.23: Convergence study showing the effect of number of finite elements on tip velocity

of a Two-Link Flexible manipulator along Y-axis 156

Fig. 4.1: Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and

torsional deformations. 162

Fig. 4.2: Dynamics modelling of a Two-Link Flexible manipulator using Space-frame finite

elements. 163

Fig. 4.3: Schematic diagram for active vibration control of a smart beam/ link. 165

Fig. 4.4: Feedback control system using PD controller 169

Fig. 4.5: Diagram showing the relative placements of sensors and actuators on the flexible links of the Two-Link Flexible manipulator. (In the figure, S1 = Sensor on Link-1; S2 = Sensor on Link-2; A1 = Actuator on Link-1 and A2 = Actuator on Link-2.) 170

Fig. 4.6: Viscoelastic model 1 179

Fig. 4.7: Viscoelastic model 2 181

Fig. 4.8: Viscoelastic model 3 182

Fig. 4.9: Development of mathematical model of torsional piezo-actuator 186

(22)

xviii

Fig. 4.10: Variation of desired hub angle and actual hub angle with time for Single Link

Flexible manipulator 188

Fig. 4.11: Time response of the deflection of tip of Single Link Flexible manipulator along X-

direction 189

Fig. 4.12: Time response of the deflection of tip of Single Link Flexible manipulator along Y-

direction 190

Fig. 4.13: Time-domain and frequency-domain responses of slope rates (rate of change of slope) of tip of second flexible link of Two-Link Flexible manipulator for viscoelastically

damped and undamped cases 194

Fig. 4.14: Comparison of slopes of tip of second flexible link of Two-Link Flexible manipulator between viscoelastically damped and undamped cases 196 Fig. 4.15: Comparison of velocity of tip of second flexible link of Two-Link Flexible manipulator between viscoelastically damped and undamped cases 196 Fig. 4.16: Comparison of slope rates (rate of change of slopes) of tip of second flexible link of Two-Link Flexible manipulator between undamped and actively damped cases for collocated

arrangement. 197

Fig. 4.17: Time-domain and frequency-domain responses of velocities of tip of second flexible link of Two-Link Flexible manipulator between undamped and actively damped cases

for collocated arrangement. 198

Fig. 4.18: Comparison of slope rates (rate of change of slopes) of tip of second flexible link of Two-Link Flexible manipulator for collocated and non-collocated sensor-actuator pairs. 199 Fig. 4.19: Time-domain and frequency-domain responses of tip velocities of second flexible link of Two-Link Flexible manipulator for collocated and non-collocated arrangement of

sensor-actuator pairs 201

(23)

xix

Fig. 4.20: Comparison of slope rates (rate of change of slopes) of tip of second flexible link of Two-Link Flexible manipulator at different values of PD gains. 202 Fig. 4.21: Comparison of linear velocities of tip of second flexible link of Two-Link Flexible

manipulator at different values of PD gains. 203

Fig. 4.22: Comparison of slope rates (rate of change of slopes) of tip of second flexible link of Two-Link Flexible manipulator between active damping control and hybrid damping control.

204 Fig. 4.23: Comparison of slopes of tip of second flexible link of Two-Link Flexible manipulator between active damping control and hybrid damping control. 204 Fig. 4.24: Comparison of bending rates of tip of second flexible link of Two-Link Flexible manipulator between active damping control and hybrid damping control. 205 Fig. 4.25: Comparison of torsional deformations of tip of second flexible link of Two-Link Flexible manipulator between active damping control case and undamped case at low values

of PD gains. 206

Fig. 4.26: Comparison of torsional deformations of tip of second flexible link of Two-Link Flexible manipulator between active damping control case and undamped case at high values

of PD gains. 206

Fig. 5.1: A Two-Link Rigid serial robot having two Revolute Joints in X-Y plane. 213 Fig. 5.2: Block diagram for Computed-Torque Control scheme 224 Fig. 5.3: Block diagram for Coupled-Error Dynamics Control scheme 226 Fig. 5.4: Trajectory formulation for the robotic manipulator shown in Fig. 5.1 231 Fig. 5.5: Comparison of paths traced by end-effector of Two-Link Rigid robot in X-Y plane as obtained by CED and CTC. (PD gains for both the controllers are as per the Kp and Kv

matrices provided in first column of Table 5.4.) 233

(24)

xx

Fig. 5.6: Comparison of paths traced by end-effector of Two-Link Rigid robot in X-Y plane as obtained by CED and CTC. (PD gains for Joint-1: Kp1 = 100; Kv1 = 20 and PD gains for

Joint-2: Kp2 = 49; Kv2 = 14.) 234

Fig. 5.7: Comparison of paths traced by end-effector of Two-Link Rigid robot in X-Y plane as obtained by CED and CTC. (PD gains for Joint-1: Kp1 = 289; Kv1 = 34 and PD gains for

Joint-2: Kp2 = 121; Kv2 = 22.) 234

Fig. 5.8: Comparison of paths traced by end-effector of Two-Link Rigid robot in X-Y plane as obtained by CED and CTC. (PD gains for Joint-1: Kp1 = 324; Kv1 = 36 and PD gains for

Joint-2: Kp2 = 144; Kv2 = 24.) 235

Fig. 5.9: Comparison between control torques provided by CED and CTC at Joint 1. (The control torque provided by CED is scaled up by multiplying with a factor of 100; PD gains for Joint-1: Kp1 = 100; Kv1 = 20 and PD gains for Joint-2: Kp2 = 49; Kv2 = 14.) 236 Fig. 5.10: Comparison between control torques provided by CED and CTC at Joint 2. (The control torque provided by CED is scaled up by multiplying with a factor of 20; PD gains for Joint-1: Kp1 = 100; Kv1 = 20 and PD gains for Joint-2: Kp2 = 49; Kv2 = 14.) 236 Fig. 5.11: Comparison of paths traced by end-effector of Two-Link Flexible robot in X-Y plane as obtained by CED and CTC. (PD gains for Joint-1: Kp1 = 289; Kv1 = 34 and PD gains

for Joint-2: Kp2 = 121; Kv2 = 22.) 238

Fig. 5.12: Error in X-coordinate of end-effector of Two-Link Rigid manipulator due to

uncertainty in mass of payload 239

Fig. 5.13: Error in Y-coordinate of end-effector of Two-Link Rigid manipulator due to

uncertainty in mass of payload 239

(25)

xxi

Fig. 5.14: Comparison of paths traced by end-effector of Two-Link Flexible robot in X-Y plane as obtained by CED-based and Robust controllers. (PD gains for Joint-1: Kp1 = 64; Kv1

= 16 and PD gains for Joint-2: Kp2 = 25; Kv2 = 10.) 241

Fig. 5.15: Comparison of paths traced by end-effector of Two-Link Flexible robot in X-Y plane as obtained by CED-based and Robust controllers. (PD gains for Joint-1: Kp1 = 289;

Kv1 = 34 and PD gains for Joint-2: Kp2 = 121; Kv2 = 22.) 242 Fig. 5.16: Comparison of paths traced by end-effector of Two-Link Flexible robot in X-Y plane as obtained by CED-based and Robust controllers. (PD gains for Joint-1: Kp1 = 289;

Kv1 = 34; Ki1 = 256 and PD gains for Joint-2: Kp2 = 121; Kv2 = 22; Ki2 = 75.) 243 Fig. 5.17: Comparison between control torques provided by CED-based and Robust controllers at Joint 1. (The control torque provided by CED is scaled up by multiplying with a factor of 20; PD gains for Joint-1: Kp1 = 100; Kv1 = 20 and PD gains for Joint-2: Kp2 = 49;

Kv2 = 14.) 244

Fig. 5.18: Comparison between control torques provided by CED-based and Robust controllers at Joint 2. (PD gains for Joint-1: Kp1 = 100; Kv1 = 20 and PD gains for Joint-2: Kp2

= 49; Kv2 = 14.) 244

Fig. 5.19: Comparison of positions of end-effector in X-Y Plane of Two-Link Flexible manipulator obeying Continuous path trajectory: obtained by using different controllers (PD gains used are: Kp1 = 64; Kv1 = 16; Kp2 = 25; Kv2 = 10) 246 Fig. 5.20: Comparison between control torques provided by different controllers at Joint 1 of Two-Link Flexible manipulator obeying Continuous path trajectory (PD gains used are: Kp1 =

64, Kv1 = 16; Kp2 = 25; Kv2 = 10) 246

(26)

xxii

Fig. 5.21: Comparison between control torques provided by different controllers at Joint 2 of Two-Link Flexible manipulator obeying Continuous path trajectory (PD gains used are: Kp1 =

64, Kv1 = 16; Kp2 = 25; Kv2 = 10) 247

Fig. 5.22:Calculation of Joint torque requirement for Two-Link Flexible manipulator 250 Fig. 5.23: Joint torque requirements for Two-Link Rigid and Flexible manipulator for cubic

polynomial trajectory with final time 2 second. 251

Fig. 5.24: Joint torque requirements for Two-Link Rigid and Flexible manipulator for 5-

degree polynomial trajectory with final time 2 second. 252

Fig. 5.25: Joint torque requirements for Two-Link Rigid and Flexible manipulator for 5-

degree polynomial trajectory with final time 20 second. 253

Fig. 5.26: FFT of Joint 1 torque for Two-Link Rigid manipulator for cubic polynomial

trajectory with final time 2 second. 253

Fig. 5.27: FFT of Joint 2 torque for Two-Link Rigid manipulator for cubic polynomial

trajectory with final time 2 second. 254

Fig. 5.28: FFT of Joint 1 torque for Two-Link Flexible manipulator for cubic polynomial

trajectory with final time 2 second. 254

Fig. 5.29: FFT of Joint 2 torque for Two-Link Flexible manipulator for cubic polynomial

trajectory with final time 2 second. 255

Fig. 5.30: FFT of Joint 1 torque for Two-Link Rigid manipulator for 5-degree polynomial

trajectory with final time 2 second. 255

Fig. 5.31: FFT of Joint 2 torque for Two-Link Rigid manipulator for 5-degree polynomial

trajectory with final time 2 second. 256

Fig. 5.32: FFT of Joint 1 torque for Two-Link Flexible manipulator for 5-degree polynomial

trajectory with final time 2 second. 257

(27)

xxiii

Fig. 5.33: FFT of Joint 2 torque for Two-Link Flexible manipulator for 5-degree polynomial

trajectory with final time 2 second. 257

Fig. 5.34: FFT of Joint 1 torque for Two-Link Rigid manipulator for 5-degree polynomial

trajectory with final time 20 second. 259

Fig. 5.35: FFT of Joint 2 torque for Two-Link Rigid manipulator for 5-degree polynomial

trajectory with final time 20 second. 259

Fig. 5.36: FFT of Joint 1 torque for Two-Link Flexible manipulator for 5-degree polynomial

trajectory with final time 20 second. 260

Fig. 5.37: FFT of Joint 2 torque for Two-Link Flexible manipulator for 5-degree polynomial

trajectory with final time 20 second. 260

Fig. 5.38: Tip deflections of second link of Two-Link Flexible manipulator at different

trajectories 261

Fig. 6.1: Experimental set-up for Single Link Flexible manipulator (without payload) at

Vibrations laboratory in IIT Delhi. 265

Fig. 6.2: Amplitude spectrum for tip vibration of Single Link Flexible manipulator without

payload. 268

Fig. 6.3: Experimental set-up for Single Link Flexible manipulator (with payload) at

Vibrations laboratory in IIT Delhi 269

Fig. 6.4: Amplitude spectrum for tip vibration of Single Link Flexible manipulator with

payload. 269

Fig. 6.5: Square wave input voltage provided to the motor at the joint. 271 Fig. 6.6: Comparison between Joint angles of Single Link Flexible manipulator (without

payload) obtained through experiment and simulation 272

(28)

xxiv

Fig. 6.7: Comparison between tip accelerations of Single Link Flexible manipulator (without

payload) obtained through experiment and simulation 272

Fig. 6.8: Comparison between Joint angles of Single Link Flexible manipulator (with

payload) obtained through experiment and simulation 273

Fig. 6.9: Comparison between tip accelerations of Single Link Flexible manipulator (with

payload) obtained through experiment and simulation. 273

Fig. 6.10: Sine wave input voltage provided to the motor at the joint. 274 Fig. 6.11: Comparison between Joint angles of Single Link Flexible manipulator (with

payload) obtained through experiment and simulation 275

Fig. 6.12: Comparison between tip accelerations of Single Link Flexible manipulator (with

payload) obtained through experiment and simulation. 275

Fig. 6.13: Experimental set-up of Two Link Flexible manipulator developed at Vibrations

laboratory in IIT Delhi. 276

Fig. 6.14: Input voltages provided to both the motors at Joint-1 and Joint-2 of the Two-Link

Flexible manipulator 279

Fig. 6.15: Comparison between Joint-1 angles of Two-Link Flexible manipulator obtained

experimentally and through simulation 280

Fig. 6.16: Comparison between Joint-2 angles of Two-Link Flexible manipulator obtained

experimentally and through simulation 280

Fig. 6.17: Comparison between tip accelerations of Two-Link Flexible manipulator obtained

experimentally and through simulation 282

Fig. 6.18: Tip response using rectangular pulse input of duty cycle 5% 284 Fig. 6.19: Comparison between Joint angles of Single-Link Flexible manipulator obtained

through experiment and simulation 285

(29)

xxv

Fig. 6.20: Comparison between tip accelerations of Single-Link Flexible manipulator

obtained through experiment and simulation 286

Fig. 6.21: Comparison between Joint 1 angles of Two-Link Flexible manipulator obtained

through experiment and simulation 287

Fig. 6.22: Comparison between Joint 2 angles of Two-Link Flexible manipulator obtained

through experiment and simulation 288

Fig. 6.23: Comparison between tip accelerations of Two-Link Flexible manipulator obtained

through experiment and simulation 289

Fig. 6.24: Comparison between Joint-1 angles obtained through experiment under the

presence and absence of viscoelastic damping 291

Fig. 6.25: Comparison between Joint-2 angles obtained through experiment under the

presence and absence of viscoelastic damping 291

Fig. 6.26: Comparison between tip accelerations obtained through experiment under the

presence and absence of viscoelastic damping 292

Fig. 6.27: Comparison between Joint-1 angles obtained through simulation under the

presence and absence of viscoelastic damping 292

Fig. 6.28: Comparison between Joint-1 angles obtained through simulation under the

presence and absence of viscoelastic damping 293

Fig. 6.29: Comparison between tip accelerations obtained through simulation under the

presence and absence of viscoelastic damping 293

Fig. A.1: A Two-Link Flexible manipulator with three revolute joints 323

Fig. B.1: The viscoelastic bar element 335

Fig. C.1: Schematic diagram of the experimental set-up of Two-Link Flexible manipulator 338

(30)

xxvi

Fig. C.2: Fabrication and assembly of experimental test-rig for flexible manipulator 339

Fig. C.3: The complete experimental test-rig 340

(31)

xxvii

List of Tables

Table 1.1: Major breakthroughs in the field of flexible robotics since 1975 24 Table 1.2: Design methods used by various researchers for modelling the flexible

manipulators 26

Table 1.3: Control approaches used by various researchers for control of flexible

manipulators 28

Table 2.1: Physical parameters of single flexible link 57

Table 2.2: Link parameters for Two-Link Flexible manipulator [Habib and Korayem, 2015]

59 Table 2.3: Link parameters for Two-Link Flexible manipulator 64 Table 2.4: Variation of natural frequencies (Eigen values) of links of the Two-Link Flexible manipulator at different payloads attached at the tip of the second link 66 Table 2.5: Table showing the effect of inclusion of higher modes of vibration on joint torque

requirement for the flexible manipulator 72

Table 2.6: Physical parameters of Two-Link Flexible manipulator to study the effect of time-

varying frequency 73

Table 3.1: Physical parameters of Two-Link Flexible manipulator used for validation

[Karagulle et al., 2017] 88

Table 3.2: First mode natural frequencies of Two-Link Flexible manipulator at different

configurations 89

Table 3.3: Physical parameter for Rigid-Flexible manipulator 94 Table 3.4: Physical parameters for Rigid-Flexible manipulator 99 Table 3.5: Physical parameters for Rigid-Flexible manipulator 105

(32)

xxviii

Table 3.6: Physical parameters for Flexible-Flexible manipulator 110 Table 3.7: Physical parameters for Flexible-Flexible manipulator 115 Table 3.8: Physical parameters for Flexible-Rigid manipulator 120 Table 3.9: Physical parameters for Flexible-Rigid manipulator 125 Table 3.10: Physical parameters for Two-Link Flexible Manipulator under the effect of

gravity 131

Table 3.11: Physical parameters for Two-Link Flexible manipulator undergoing combined

bending-torsional vibrations 146

Table 3.12: Physical parameters of both the links of Two-Link Flexible manipulator 149 Table 3.13: Physical parameters of Two-Link Flexible manipulator used for comparison

between AMM and FEM based approaches. 152

Table 3.14: Time required for executing the Finite Element program with different number of

finite elements 157

Table 4.1: Table describing the relative positions of sensors and actuators placed on the

flexible links 171

Table 4.2: Model representation of viscoelasticity 175

Table 4.3: Stored and dissipated energy functions 177

Table 4.4: System parameters for validation for single flexible link 188 Table 4.5: Parameters table for simulation of Two-Link Flexible manipulator 192 Table 4.6: Change in natural frequencies of the Two-Link Flexible manipulator due to the

presence of viscoelastic and piezoelectric layers 207

Table 5.1: Comparison between CTC and CED 227

Table 5.2: Physical parameters for Two-Link manipulator 228

(33)

xxix

Table 5.3: Boundary conditions for formulation of joint-space trajectories 229 Table 5.4: Finding the control gains for CED-based controller and CTC-based controller for

critically damped response 232

Table 5.5: Trajectories used in present study 249

Table 6.1: Physical parameters for single-link flexible manipulator 266 Table 6.2: Physical parameters for Two Link Flexible manipulator 277 Table 6.3: Specifications of electronic instruments used during experiment 278

Table 6.4: Specifications of viscoelastic material 283

(34)

xxx

Nomenclature

AMM Assumed modes method

FEM Finite elements method

EB Euler-Bernoulli

DH Denavit-Hartenberg

CMS Component mode synthesis

LQR Linear quadratic regulator

ERLS Equivalent rigid link system

PD Proportional-derivative

PZT Lead zirconate titanate

IRC Integral resonant control

ANN Artificial neural network

MLCC Maximum load carrying capacity

SMC Sliding mode control

MPC Model predictive control

PSO Particle swarm optimization

FLC Fuzzy logic control

DDC Decomposed dynamic control

VEPSO Vector evaluated particle swarm optimization

MGA Modified genetic algorithm

(35)

xxxi

ASTM American Society for Testing and Materials MIMSC Modified independent modal space control

ACL Active constrained layer

ADF Anelastic displacement field(s)

S/As Sensors and actuators

ACLD Active constrained layer damping

CP Continuous path

PTP Point-to-point

CTC Computed torque control

CED Coupled-error dynamics

C.G./ CG Center of gravity

N.A. Neutral axis

PID Proportional-integral-derivative

SISO Single input/single output

T.F. Transfer function

i Link number

j Joint number; โˆšโˆ’1

pi Position of any point on Link-i with respect to inertial frame

Li Length of Link-i

ฮธi Joint angle pertaining to Link-i

(36)

xxxii

xi Distance measured along un-deformed neutral axis of Link-i wi or wi(xi,t) Elastic deflection of Link-i undergoing flexural deformation with

respect to xi

wi* Elastic deflection of end-point of Link-i undergoing flexural deformation with respect to xi

๐‘ค๐‘–โˆ—โ€ฒ Bending angle at end-point of Link-i = ๐‘‘๐‘ค๐‘–

โˆ— ๐‘‘๐‘ฅ๐‘–

Superscript (โ€ฒ) Differentiation w.r.t. space x, i.e. ๐‘‘

๐‘‘๐‘ฅ or transpose of a matrix ri Position coordinate of any point on Link-i measured w.r.t. local

frame attached to Link-i

ri* Position coordinate of end point of Link-i measured w.r.t. local frame attached to Link-i

๐‘ฬ‡๐‘– Velocity of any point on Link-i measured w.r.t. inertial frame T, L, Lpf Transformation matrix

K.E. Kinetic energy

P.E. Potential energy

S.E. Strain energy

G.P.E. Gravitational potential energy

g Acceleration due to gravity (9.81 m/s2)

ฯi Density of Link-i

Ai Area of cross-section of Link-i

(37)

xxxiii

Ei Youngโ€™s modulus of elasticity of Link-i

Ii Area moment of inertia of Link-i

p Position coordinates w.r.t. inertial frame or distributed load

v Velocity coordinates w.r.t. inertial frame; voltage; bending deflection Subscript- (p) Payload or piezo

โ„’ Lagrangian

qj Generalized coordinate for Joint-j

Qj Generalized external force applied at Joint-j [M(q)] Inertia matrix for robotic system

[H(q, qฬ‡)] Centrifugal and Coriolis force/torque vector for robotic system [G(q)] Gravity vector for robotic system

[C(q)] Matrix associated with velocity dependent terms for robotic system [K(q)] Stiffness matrix for robotic system

n Number of modes in AMM; number of flexible degrees of freedom

Wn Mode shape function for nth mode

Tn Time-dependent function for nth mode

m Number of assumed modes; mass; mass per unit length Mpi Effective mass of payload attached at end-point of Link-i

Jpi Effective mass moment of inertia attached at end-point of Link-i z Root of the frequency equation obtained during application of AMM

(38)

xxxiv Subscript- (h) Hub

ฯ‰n Natural angular frequency of vibration of nth mode ฯ‰dn Damped angular frequency of vibration of nth mode

ฮพ Damping ratio of nth mode; intrinsic or isoparametric coordinate in FEM

๐œ“(๐‘ก) A time-dependent function

ฮฉ Angular frequency

D Differential operator, ๐‘‘

๐‘‘๐‘ก

ฯ•i or ฯ•i(xi, t) Torsional deformation of any point on Link-i ฯ•i* Torsional deformation of end point of Link-i

bi Width of Link-i

ฯ„ Torque; shear stress

Subscript- (r) Rigid

Subscript- (f) Flexible; final

N Rigid degrees of freedom; Shape function along axial direction in FEM;

[Mff], ๐’Ž๐‘ฎ๐’† Global mass matrix [Kff], ๐’Œ๐‘ฎ๐’† Global stiffness matrix

me Element mass matrix (global)

ke Element stiffness matrix (global)

(39)

xxxv

Ff Global force vector

๐‘“๐บ๐‘’ Element load vector (global)

Cff Global damping matrix

E Youngโ€™s modulus of elasticity; spring constant

G Modulus of rigidity

Iy Area moment of inertia about y-axis

Iz Area moment of inertia about z-axis

J Polar moment of inertia; complex compliance

Jm; Im Mass moment of inertia

le Length of element in FEM

๐’Ž๐’†๐’ Local mass matrix

๐’Œ๐’†๐’ Local stiffness matrix

๐‘“๐’ Local force vector

py Distributed load along y-direction pz Distributed load along z-direction

๐€ Matrix of direction cosines

l, m, n Direction cosines along x-, y- and z-axes respectively

Q Global degrees of freedom

Ql Local degrees of freedom

vสน Slope

(40)

xxxvi

ฮฑ; ๐œ™ Twist

ฮธ Angular rotation of outermost fibre of beam in torsion

qb Bending degree of freedom in FEM

qT Torsion degree of freedom in FEM

H Flexural shape function in FEM

U Strain energy

ฦ‰ Electric displacement

โ„ฐ Electric field

๐œ€ Dielectric constant

๐œ– Strain

๐œŽ Stress

๐‘  Compliance

๐‘‘ Piezoelectric constant

๐‘ฃ๐‘  Voltage generated by piezo-sensor

๐ถ๐‘“, ๐ถ Capacitance of piezo-sensor ๐‘…๐‘“, ๐‘… Resistance of piezo-sensor

bps Width of piezo-sensor

bpa Width of piezo-actuator

๐‘ฃ๐‘Ž Voltage applied at actuator

h Thickness of Link

(41)

xxxvii

hp Thickness of piezo-ceramic

๐‘คฬ‡ Rate of change of bending deflection

๐‘คฬ‡โ€ฒ Slope rate or rate of change of slope

M Bending moment

Superscript T Transpose

Kp Proportional gain

Kv Derivative gain

ฮท Dynamic viscosity; modal coordinate; parameter in robust control

u Extension; control torque

Y Complex modulus

V Volume

๐œ™ Dissipation function

ฯ‰ Angular velocity

๐’„๐’†๐’ Local damping matrix

๐’„๐‘ฎ๐’† Global damping matrix

T Twisting torque

๐›พ Shear strain

r Radius

[W] Modal matrix

Subscript- (d) Desired

(42)

xxxviii

t Time

tf Final time of trajectory

๐œƒ๐‘’ Joint error

w Disturbance

๐›ฟ Parameter in robust control

ฮ” Parameter in robust control

In Identity matrix of order n

eq. Equation

Exp Experimental

Sim Simulation

References

Related documents

The coupler also called the floating link connects the crank of our mechanism to the rocker link. This link is responsible for transferring the rotating motion of the crank

In this section fuzzy identification is performed on a set of input-output data obtained from the two-link flexible manipulator. A fuzzy model is obtained which

An output feedback controller is designed with collocated angular position and velocity sensors based on the reduced order model and they have experimentally

Control strategies with an adaptive long range predictive control algorithm based on the Generalized Predictive Control (GPC) algorithm were developed in [9] and used

In this work several aspects regarding the kinematics, workspace, Jacobian analysis and dynamic identification of a two-link planar manipulator are studied and presented.. De Luca

In this work, the redundancy resolution for the 3-PRPR kinematically redundant parallel manipulator has been achieved using two optimization schemes namely: spiral and

4.29 Comparison of the responses of flexible tapered hybrid composite manipulator under different input shapers and trapezoidal torque (a) Different Torques for first link (b)

Thus Final concept is kinematic link mechanism which uses various kinematic links like arm rest ink, seat link, back seat link and treadle link to be assembled in