• No results found

Performance evaluation of semitransparent photovoltaic thermal system integrated with building

N/A
N/A
Protected

Academic year: 2023

Share "Performance evaluation of semitransparent photovoltaic thermal system integrated with building"

Copied!
29
0
0

Loading.... (view fulltext now)

Full text

(1)

PERFORMANCE EVALUATION OF

SEMITRANSPARENT PHOTOVOLTAIC THERMAL SYSTEM INTEGRATED WITH BUILDING

NEHA GUPTA

CENTRE FOR ENERGY STUDIES

INDIAN INSTITUTE OF TECHNOLOGY DELHI

OCTOBER 2017

(2)

© Indian Institute of Technology Delhi (IITD), New Delhi, 2017

(3)

PERFORMANCE EVALUATION OF

SEMITRANSPARENT PHOTOVOLTAIC THERMAL SYSTEM INTEGRATED WITH BUILDING

by

NEHA GUPTA

Centre for Energy Studies

Submitted

in fulfillment of the requirements of the degree of Doctor of Philosophy to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

OCTOBER 2017

(4)

Dedicated to my parents

(5)

i

Certificate

This is to certify that the thesis entitled “Performance Evaluation of Semitransparent Photovoltaic Thermal System integrated with Building” being submitted by Neha Gupta to the Indian Institute of Technology Delhi, is worthy of consideration for the award of the degree of

‘Doctor of Philosophy’ and is a record of the original bona fide research work carried out by her under our guidance and supervision. The results contained in the thesis have not been submitted in part or full, to any other University or Institute for the award of any degree or diploma.

(Dr. G.N. Tiwari) (Dr. T. S. Bhatti)

President Professor

Bag Energy Research Society (BERS) Centre for Energy Studies

11-B, Gyan Khan IV Indian Institute of Technology Delhi

Indirapuram Hauz Khas, New Delhi-110016

Ghaziabad, U.P- 201010 India

India

(http://bers.in/)

Date:

(6)

iii

Acknowledgements

I am deeply indebted to my supervisor, Prof. (Dr.) G.N Tiwari for his stimulating motivation, continuous guidance, encouragement and immense knowledge throughout my research work. His guidance helped me immensely during the research and writing of this thesis. I cannot imagine having a better supervisor and mentor for my research work.

I am very thankful to Prof. (Dr.) T.S. Bhatti for his valuable time, support, encouragement and guidance which helped me complete this work.

My sincere gratitude to Prof. (Dr.) Arvind Tiwari for providing moral support and encouragement from time to time.

A special thanks to my loving family and friends. Words cannot express how grateful I am to my grandparents, parents, brother, sister- in- law and niece. Their continuous prayers, praise and cheer helped me sustain. They have always supported me whenever I needed them. I would also like to express my deep gratitude towards my brother Ashish Gupta and friend Pooja Saxena for her time all along this journey, to bounce off ideas and patiently proof-read my thesis.

I would like to thank and convey my deep gratitude to my colleagues: Mr. Shyam, Mr. Rohit Tripathi, Ms. Neha Dimri and Mr. Lovdeep Sahota for their support and cooperation, without which my job would have undoubtedly been more difficult.

Date: October, 2017 (Neha Gupta)

(7)

iii

Abstract

In this thesis, the review of various passive heating and cooling concepts has been done.

Photovoltaic (PV) Thermal systems integrated with the buildings have also been studied. The performance of Building integrated Semitransparent Photovoltaic Thermal (BiSPVT) system have been analyzed in four cases, namely (A) Energy and exergy analysis of Semitransparent Photovoltaic (SPV) modules integrated with the rooftop of the building, (B) Effect of water flow on SPV modules to analyze the cooling effect offered by evaporative cooling over performance of BiSPVT system, (C) Exergy analysis of effect of heat capacity (water mass placed inside the room) on the BiSPVT system and (D) Performance of BiSPVT system with both water mass and water flow over the SPV modules.

Energy balance equations and analytical expressions for various concerned temperatures (room air, floor, solar cell, water tank, water mass, water flow), solar cell electrical efficiency for the concerned cases have been derived for given design parameters. Further, daylight savings, electrical energy, thermal and exergy efficiency have been evaluated. The analytical results of all the proposed cases have been compared with each other to understand the effectiveness of each system. Effect of number of air changes, velocity, packing factor, water mass and mass flow rate have also been taken into consideration. In addition, a case study has also been conducted to understand the energy matrices of BiSPVT system.

It has been reported that for given design parameters and climatic conditions:

• About 1.17 % increase was found in the overall thermal exergy with increase in the number of air changes from 0 to 4 (Chapter 2, case A).

(8)

iv

• Optimization of packing factor from 0.89 to 0.225 can result an increase in the solar cell electrical efficiency by 7.61 % (Chapter 3, case B).

• With flow of water over the SPV modules (case B), an increase in the electrical efficiency by 2.7 % was found when compared to case A (Chapter 3).

• Heat capacity and water flow over the SPV modules have no impact on the daylight savings.

• Increase in water mass (from 0 kg to 600 kg) helps in reducing the thermal load levelling by 20.39 % (Chapter 4, case C).

• With introduction of heat capacity of 600 kg (Case C), a drop of 27.5 ˚C in room air temperature was noted when compared to Case A (Chapter 4).

• Increase of 0.024 (by fraction) in solar cell electrical efficiency if found in Case D as compared to Case C (Chapter 5).

• Minimum energy pay-back time, maximum energy production factor and maximum life cycle conversion efficiency are achieved for greater temperature difference between the room and the ambient (Chapter 6).

• The theoretical and experimental results for room air and solar cell temperature were verified with 0.97 as correlation coefficient, which indicated a fair agreement between the theoretical and experimental results for case A.

Finally, the overall conclusions for the present research work have been presented and discussed. All the cases have been compared under similar design parameters and climatic conditions. The suitable future scope of work has also been made on the basis of the research work done so far.

(9)

v

साराांश

इस अनुसंधान कार्य में, विविन्न वनष्क्रिर् हीव ंग और कूव ंग अिधारणाओं की समीक्षा की गई है। इमारत ं के साथ एकीकृत फ ि ष्क्रिक (पीिी) थमय वसस्टम का िी अध्यर्न वकर्ा गर्ा है। बिल्डिंग इिंटीग्रेटेड सेमी

ट्रिंसपेरेंट फोटोवोल्िक थममल (िी.आई.एस.पी.वी.टी) बसस्टम के प्रदर्यन का विश्लेषण चार माम ं में वकर्ा

गर्ा है, अथायत् (ए) इमारत की छत के साथ एकीकृत सेमी ्ांसपें फोटोवोल्िक (एस.पी.िी) मॉड्यू की

ऊर्ाय और एक्सर्जी विश्लेषण, (बी) िी.आई.एस.पी.वी.टी प्रणा ी के वनष्पादन पर िाष्पीकरणीर् ठंडा ह ने के

कारण एस.पी.वी.मॉड्यू पर पानी के प्रिाह से की र्ाने िा ी ठंडक के प्रिाि का विश्लेषण, (सी)

िी.आई.एस.पी.वी.टी प्रणा ी पर ही कैपेवस ी (कमरे के अंदर रखा गर्ा पानी) के प्रिाि का एक्सर्जी

विश्लेषण और (डी) एस.पी.िी मॉड्यू पर ही कैपेवस ी और र् प्रिाह द न ं के साथ िी.आई.एस.पी.वी.टी

प्रणा ी का प्रदर्यन।

विविन्न संबंवधत तापमान (कमरे में हिा, फर्य, सौर से , पानी की ंकी, िा र मास, र् प्रिाह), सौर से

दक्षता के व ए ऊर्ाय र्ेष समीकरण ं और विश्लेषणात्मक अविव्यष्क्रिर्ां, सम्बष्क्रित माम ं के व ए वदए गए वडर्ाइन पैरामी र के व ए प्राप्त की गई है। इसके अ ािा, डे- ाइ सेविंग, इ ेष्क्रर्क ऊर्ाय, थमय और एक्सर्जी दक्षता का मूल्ांकन वकर्ा गर्ा है। प्रत्येक प्रणा ी की प्रिािर्ी ता क समझने के व ए सिी

प्रस्तावित माम ं के विश्लेषणात्मक पररणाम एक-दूसरे के साथ तु ना वकए गए हैं। िार्ु पररितयन, गवत, पैवकंग फैरर, िा र मास और मास फ्ल रे की संख्या क िी ध्यान में रखा गर्ा है। इसके अ ािा,

िी.आई.एस.पी.वी.टी वसस्टम के ऊर्ाय मैव ्क्स क समझने के व ए एक केस स्टडी िी की गई है।

वदए गए वडर्ाइन पैरामी र और र् िार्ु पररष्क्रथथवतर् ं के व ए वनम्न वनष्कषय हैं:

(10)

vi

0 से ४ तक हिा में पररितयन की संख्या में िृष्क्रि के साथ, ओिरआ थमय एक्सर्जी में गिग १.१७ % िृष्क्रि

हुई (अध्यार् २, केस ए)।

0.८९ से 0. २२५ तक पैवकंग फैरर के ऑविमाइर्ेर्न के पररणामस्वरूप सौर से इ ेष्क्रर्क दक्षता में

७.६१ % की िृष्क्रि ह सकती है (अध्यार् ३, केस बी)।

केस ए की तु ना में, एस.पी.वी. मॉड्यू (केस बी) पर पानी के प्रिाह के कारण वबर् ी की दक्षता में २.७ % की िृष्क्रि हुई (अध्यार् ३) ।

ही कैपेवस ी और एस.पी.वी. मॉड्यू के ऊपर पानी के प्रिाह के कारण डे- ाइ सेविंग्स पर क ई प्रिाि

नहीं पड़ता है।

िा र मास में िृष्क्रि (0 वक ग्राम से ेकर ६00 वक ग्राम तक) थमय ड स्तर क २0. ३९ % कम करने में

मदद करता है (अध्यार् ४, केस सी) ।

केस ए की तु ना में, ६00 वक ग्राम की ही कैपेवस ी (केस सी) के कारण, कमरे में हिा के तापमान में

२७.५ वडग्री सेष्क्रिर्स की वगराि दर्य की गई (अध्यार् ४) ।

केस सी की तु ना में केस डी में सौर से विद्र्ुत दक्षता में २.४ % में िृष्क्रि दर्य की गई (अध्यार् ५) ।

कमरे और एष्क्रम्बएं के बीच अवधक तापमान के अंतर के व ए न्यूनतम एनर्जी पे- बैक ाइम, अवधकतम एनर्जी प्र डक्शन फैरर और अवधकतम ाइफ साइवक कन्वर्यन दक्षता प्राप्त की गई है (अध्यार् ६) ।

कमरे में हिा और सौर से के तापमान के व ए सैिांवतक और प्रार् वगक पररणाम 0.९७ के साथ सहसंबंध गुणांक के रूप में सत्यावपत वकए गए थे, वर्समें केस ए के सैिांवतक और प्रार् वगक पररणाम ं के बीच एक उवचत सह-संबंध बतार्ा गर्ा है।

अंत में, ितयमान अनुसंधान कार्य के व ए समग्र वनष्कषय प्रस्तुत वकए गए हैं और चचाय की गई है। सिी माम ं की तु ना समान वडर्ाइन पैरामी र और र् िार्ु पररष्क्रथथवतर् ंके साथ की गई है। अब तक वकए गए अनुसंधान के आधार पर उपर ि कार्य के िविष्य की संिािना का िी सुझाि वदर्ा गर्ा है।

(11)

vii

Table of contents

Certificate i

Acknowledgements iii

Abstract iii

साराांश v

Table of contents vii

List of figures xii

List of tables xvii

Nomenclature xix

Design parameters xxii

List of abbreviations xxiv

Chapter 1 : General introduction 1

1.1 Introduction 2

1.2 Passive heating concepts 2

1.2.1 Direct gain 3

1.2.2 Indirect gain 4

1.3 Passive cooling concepts 5

1.3.1 Evaporative cooling 6

(12)

viii

1.3.2 Natural ventilation 7

1.3.3 Daylight 7

1.3.4 Passive building design 8

1.4 Building integrated photovoltaic systems 18

1.5 Research objectives 18

1.6 Thesis outline 24

Chapter 2 : Exergy analysis of semitransparent photovoltaic thermal system integrated

with building 26

2.1 Introduction 27

2.2 Working principle 28

2.3 Thermal modelling 29

2.4 Energy balance for BiSPVT system 30

2.5 Exergy analysis 33

2.5.1Electrical energy 33

2.5.2 Thermal exergy 34

2.5.3 Exergy of solar radiation 35

2.5.4 Overall exergy 35

2.5.5Exergy efficiency 36

2.6 Thermal efficiency 36

2.7 Methodology 36

(13)

ix

2.8 Results and discussions 37

2.9 Experimental validation 45

2.10 Conclusions 48

Chapter 3 : Effect of water flow over semitransparent photovoltaic thermal system

integrated with building 49

3.1 Introduction 50

3.2 Working principle 51

3.3Thermal modeling 52

3.4Energy balance for BiSPVT system with water flow 53

3.5 Methodology 57

3.6 Results and discussions 59

3.7 Conclusions 67

Chapter 4 : Effect of heat capacity on exergy performance of semitransparent photovoltaic

thermal system integrated with building 69

4.1 Introduction 70

4.2 Working principle 71

4.3Thermal modelling 72

4.4 Energy balance for BiSPVT system with water mass 73

4.5 Exergy analysis 75

4.5.1 Thermal exergy 75

(14)

x

4.5.2 Overall exergy 75

4.5.3 Exergy efficiency 76

4.6 Thermal efficiency 76

4.7 Methodology 76

4.8 Results and Discussions 78

4.9 Conclusions 87

Chapter 5 : Effect of heat capacity and watre flow over semitransparent photovoltaic

thermal system integrated with building 89

5.1 Introduction 90

5.2 Working principle 90

5.3 Thermal modelling 91

5.4Energy balance for BiSPVT system with water mass and water flow 91

5.5Methodology 95

5.6 Results and Discussions 97

5.7 Conclusions 102

Chapter 6 : Energy matrices of semitransparent photovoltaic thermal system integrated

with building: A case study 103

6.1 Introduction 104

6.2 Description of Sodha Bers Complex, Varanasi 105

6.2.1 Basement floor 106

(15)

xi

6.2.2 Ground, first, second and third floor 106

6.2.3 Terrace floor 107

6.3 Energy matrices (Life cycle analysis) of Sodha Bers Complex 110

6.3.1 Thermal heat gain 112

6.3.2 Electrical energy 113

6.3.3 Daylight savings 114

6.3.4 Total energy generated per year 115

6.3.5 Embodied energy 115

6.3.6 Energy pay back time 116

6.3.7 Energy production factor 117

6.3.8 Life cycle conversion efficiency 118

6.4 Results and Discussions 118

6.5 Conclusions 120

Chapter 7 : Conclusions and future scope of work 121

7.1 Conclusions 122

7.2 Future scope of work 127

References 128

List of publications 143

Brief Bio-data of the author 146

(16)

xii

List of figures

Fig. 1.1(a): Schematic description of direct gain. 3

Fig. 1.1(b): Schematic depiction of indirect gain. 5

Fig. 1.1(c): Schematic depiction of direct and indirect gain for SPV system integrated with

buildings. 5

Fig. 1.2: Classification of Building integrated photovoltaic systems. 19 Fig. 2.1: Cross sectional view of building integrated semitransparent photovoltaic thermal

system. 29

Fig. 2.2: Hourly variation of solar intensity and ambient air temperature for a typical day in the

month of January (winter), Varanasi, India. 38

Fig. 2.3: Effect of number of air changes per hour on (a) hourly variation of room air

temperature (Tr) and (b) TLL. 39

Fig. 2.4: Effect of number of air changes per hour on hourly variation of solar cell temperature

(Tc). 39

Fig. 2.5: Effect of number of air changes per hour on hourly variation of solar cell electrical

efficiency (ηc). 40

Fig. 2.6: Effect of number of air changes per hour on hourly variation of floor temperature

(Tf) 40

Fig. 2.7(a): Effect of number of air changes per hour on hourly variation of electrical energy

e). 41

(17)

xiii

Fig. 2.7(b): Hourly variation of total thermal exergy based on second law (Ė𝑥𝑡ℎ(𝑖)) and first law

of thermodynamics (Ėxth(ii)) for N=2. 41

Fig. 2.7(c): Effect of number of air changes per hour on hourly variation of thermal exergy from

floor to room air (Ėxthf(ii)). 42

Fig. 2.7(d): Effect of number of air changes per hour on hourly variation of thermal exergy from

PV module to room air (Ėxthc(ii)). 42

Fig. 2.7(e): Effect of number of air changes per hour on hourly variation of total thermal exergy

(Ėxth(ii)). 43

Fig. 2.7(f): Hourly daylight energy savings. 43

Fig. 2.8(a): Effect of number of air changes per hour on (a) hourly variation of overall exergy

and (b) on daily variation of overall exergy. 44

Fig. 2.9: Experimental setup. 46

Fig. 2.10: Hourly variation of solar intensity and ambient air temperature for a typical day of

September, New Delhi, India. 47

Fig. 2.11: Hourly variation of room air temperature of theoretical model (Tr, Th’), room air temperature of experimental setup (Tr, Ex’), solar cell temperature for theoretical model (Tc, Th’) and solar cell temperature for experimental setup (Tc, Ex’). 47 Fig. 3.1: BiSPVT system with water flow (a) Cross sectional view and (b) Sectional detail. 52

Fig. 3.1(c): Cross section of the elemental area bdx. 53

Fig. 3.2: Hourly variation of solar intensity and ambient air temperature for a typical day in the month of June (summer), New Delhi, India for passice cooling. 60 Fig. 3.3(a): Hourly variation of ambient temperature, room air temperature (with and without water flow), solar cell temperature and floor temperature for N=1 and v= 1 m/s. 60

(18)

xiv

Fig. 3.3(b): Effect of relative humidity on the hourly variation of room air temperature for the

month of June. for passive cooling. 61

Fig. 3.3(c): The hourly variation of room air temperature (with water flow) for different months

of New Delhi. 62

Fig. 3.3(d): Daily maximum room air temperature (with water flow) for different months of New

Delhi. 62

Fig. 3.4: Hourly variation of electrical efficiency of solar cell and solar cell temperature (with

and without water flow) for N=1 and v= 1 m/s. 63

Fig. 3.5: Various temperature difference between with and without water flow over the BiSPVT system at (a) constant v (v= 1 m/s), varying N and (b) constant N (N=1), varying velocity. 64 Fig. 3.6: Solar cell electrical efficiency with water flow at (a) constant N (N=1),varying velocity

and (b) constant velocity (v= 1 m/s), varying N. 64

Fig. 3.7: Effect of packing factor on BiSPVT system with water flow for N=1 and v= 1 m/s on (a) room air, solar cell and floor temperature and (b) solar cell electrical efficiency. 65 Fig. 3.8: Effect of packing factor on (a) Electrical energy and (b) daylight savings. 66 Fig. 3.8(c): Daily electrical energy produced by the proposed system for different months of New

Delhi at N=1, v= 1 m/s and β=0.89. 67

Fig. 4.1: Cross sectional view of building integrated semitransparent photovoltaic thermal

system with water tank. 72

Fig. 4.2: Hourly variation of solar intensity and ambient air temperature for a typical day for

different months, Srinagar, India for thermal heating. 78

Fig. 4.3(a): Hourly variation of different temperatures of BiSPVT system for the month of

January and Mw= 200 kg for thermal heating. 79

(19)

xv

Fig. 4.3(b): Effect of water mass (heat capacity) on hourly variation of room temperature for the

month of January for thermal heating. 79

Fig. 4.3(c): Effect of water mass (heat capacity) on hourly variation of floor temperature for the

month of January for thermal heating. 80

Fig. 4.3(d): Effect of water mass (heat capacity) on hourly variation of solar cell temperature and solar cell electrical efficiency for the month of January for thermal heating. 80 Fig. 4.3(e): Effect of water mass (heat capacity) on hourly variation of water temperature for

the month of January for thermal heating. 81

Fig. 4.4: Effect of heat capacity of water mass on TLL for a typical day of different months. 82 Fig. 4.5: Effect of water mass (heat capacity) on average monthly variation of (a) thermal energy (b) thermal exergy (c) thermal efficiency and (d) thermal exergy efficiency. 83 Fig. 4.6: (a) Effect of water mass (heat capacity) on average monthly variation of electrical energy and (b) Effect of transmissivity of glass on average variation of electrical and thermal

energy for the month of January and Mw= 200 kg. 84

Fig. 4.7: Average monthly variation of daylight savings. 85

Fig. 4.8: Effect of water mass (heat capacity) on average monthly variation of (a) overall exergy

and (b) overall exergy efficiency. 86

Fig. 5.1: BiSPVT with water mass and water flow (a) Cross sectional view and (b) Sectional

detail. 91

Fig. 5.2: Hourly variation of different temperature for BiSPVT system for Mw= 600 kg and

w1= 0.01 kg/s. 97

(20)

xvi

Fig. 5.3: Hourly variation of solar cell temperature and solar cell electrical efficiency for Mw= 600 kg and ṁw1= 0.01 kg/s. for BiSPVT system with (i) water mass and water flow and (ii) only

water mass. 98

Fig. 5.4: Effect of mass flow rate of water on hourly variation of different temperatures and solar cell electrical efficiency for BiSPVT system for Mw= 600 kg. 99 Fig. 5.5: Effect of mass of water on hourly variation of different temperatures and solar cell electrical efficiency for BiSPVT system for ṁw1= 0.01 kg/s. 100 Fig. 5.6: Hourly variation of (a) electrical energy and (b) daylight savings. 101

Fig. 6.1: View of Sodha Bers Complex. 105

Fig. 6.2(a): Basement floor plan. 106

Fig. 6.2(b): Ground floor plan. 107

Fig. 6.2(c): First floor plan. 107

Fig. 6.3: Zone 2: (a) exhaust gate from outside (b) exhaust gate from inside (c) inside view and

(d) outside view. 109

Fig. 6.4: Zone 3: (a) outside view and (b) solar roof dryer arrangement. 109

Fig. 6.5: Sectional view of Sodha Bers Complex. 110

Fig. 7.1(a): Case A (BiSPVT system only). 123

Fig. 7.1(b): Case B (BiSPVT system with water flow). 123

Fig. 7.1(c): Case C (BiSPVT system with heat capacity). 124

Fig. 7.1(d): Case D (BiSPVT system with water flow and heat capacity). 124 Fig. 7.1(e): Electrical energy produced by Cases A, B, C and D. 125

(21)

xvii

List of tables

Table 1.1: Studies on Direct gain. 4

Table 1.2: Brief summary of passive cooling concepts: evaporative cooling, natural ventilation

and daylight. 9

Table 1.3: Studies on building integrated photovoltaic systems. 20 Table 2.1: Daily thermal and exergy efficiency of BiSPVT system. 44 Table 2.2: Various design parameters taken for the calculations of room air temperature and solar

cell temperature for experimental validation. 45

Table 4.1: Effect of water mass (heat capacity) on yearly overall exergy for different weather

conditions prevalent in Srinagar, India. 87

Table 5.1: Temperature and electrical efficiency variation with and without the water flow at

13:00 hours for Mw= 600 kg and ṁw1= 0.01 kg/s. 98

Table 5.2: Effect of varying mass flow rate and mass of water on the proposed BiSPVT system at

peak hours. 100

Table 6.1: Design parameters and nomenclature for life cycle analysis of SBC. 111 Table 6.2: (i) Hourly, daily and annual heat gain, (ii) thermal energy efficiency of SBC for

average daily solar intensity= 450 W/m2. 113

Table 6.3: Annual heat gain of SBC for average daily solar intensity= 650 W/m2. 113 Table 6.4: Electrical energy produced by SPV system installed at SBC. 113 Table 6.5: Energy generated per year (total energy savings) for SBC. 115

Table 6.6: Energy Pay Back Time (EPBT). 117

(22)

xviii

Table 6.7: Energy Production Factor (EPF). 117

Table 6.8: Life Cycle Conversion Efficiency (LCCE). 118

Table 6.9: Energy Pay Back Time (EPBT), Energy Production Factor (EPF) and Life Cycle

Conversion Efficiency (LCCE). 120

Table 7.1: Cases used to analyze the performance of BiSPVT system. 122

Table 7.2: Comparative analysis of all the cases. 125

(23)

xix

Nomenclature

A Area ( m2)

b Breadth of the roof (m) C Specific heat ( J/kg K) dx Elemental length (m)

E Energy (Wh)

Ė Rate of energy (W) Ex Total thermal exergy (J) Ėx Rate of exergy (W)

F Fraction of solar radiation absorbed by water tank h Heat transfer coefficient (W/m2 K)

hc Convective heat transfer coefficient (W/m2 K) I(t) Solar intensity (W/m2)

K Thermal conductivity (W/m K) L Thickness of roof (m)

Lr Length of the roof (m)

M Mass (kg)

ew Rate of water consumption ( kg hr-1) ṁew1 Mass flow rate of water (kg/s) N Number of air changes per hour Ń Number of hours

P Partial pressure (N/m2) Q Heat transfer (W)

q̇ Rate of heat transfer (W/m2) Qu Thermal energy (J)

Qu̇ Rate of hourly energy (W) r correlation coefficient T Temperature (˚C)

U Overall heat transfer coefficient (W/m2 K) v Velocity of air (m/s)

V Volume of room (m3)

(24)

xx Greek symbols

α Absorptivity β Packing factor

β0 Temperature coefficient (˚C-1) γ Relative humidity (%)

ΔT Temperature difference (˚C) η Efficiency

η̅ Average efficiency

η0 Electrical efficiency at standard test condition λ Latent heat of water (J/kg)

ρ Density (kg/m3) τ Transmissivity ρ Density (kg/m3) Subscript

0 Outside

(i) Case (i) (ii) Case (ii)

a Ambient air

b from floor to the area below the room under study b' Blackened surface

c Solar cell

cr From solar cell to room through glass cover.

cw1 Evaporative

daylight Solar energy through non- packing area of PV module

e Electrical

eff Effective ew1 Evaporative

ex Exergy

Ex’ Experimental

f Floor of room under study

g Glass

h' From tank plate to water

i Inside

m PV module

max Maximum

min Minimum

o Area below the room under study (to be changed in the equations)

(25)

xxi o,d Overall daily

o,ex Overall exergy

r Room under study

R Roof

ra From room to ambient.

ref Reference

ro From room to bottom of roof.

rw1 Radiative

s Sun surface

sun Solar radiation of PV module

t Water tank

tca From solar cell to ambient through glass cover.

tcw From solar cell to water

th Thermal

Th’ Theoretical

thc From PV module to room air thf From floor to room air th,ex Thermal exergy

th,w Thermal exergy due to water w Water inside the tank

w' From tank plate to water

w1 Water flowing over the semitransparent photovoltaic thermal modules

(26)

xxii

Design parameters

Parameters Values

Af 8.86 m2

Am 9.18 m2

AR 9.18 m2

At 2.24 m2 (for Mw= 200 kg)

3.56 m2 (for Mw= 400 kg) 4.33 m2 (for Mw= 600 kg) 9.011 m2 (for Mw= 2000 kg) 15.028 m2 (for Mw= 4000 kg)

Ca 1005 J/kg/K

Cw 4190 J/kg/K

h0 5.7 + 3.8 v W/m2 K

hc 2.8 W/m2 K

hcr 5.7 W/m2 K

hi 2.8 + 3v W/m2 K

hw’ 100 W/m2 K

Kg 0.9 W/m K

KR 0.67 W/m K

Lr 3.67 m

Lc 0.003 m

LR 0.6 m

Lg 0.003 m

Ma 33.6 kg

To 20 ˚C

Tref 25 ˚C

Ts 6000 K

Utcw 50 W/m2 K

V 28 m3

αb’ 0.9

αc 0.9

αR 0.4

β 0.89

β0 0.0045 /˚C

γ 50 %

η0 0.15

λ 2.25 X 106 J/kg

ρa 1.2 kg/m3

(27)

xxiii

ρw 1000 kg/m3

𝜏𝑔 0.9

Clear height of the room 3 m

(28)

xxiv

List of abbreviations

BF Basement Floor

BiPV Building integrated Photovoltaic

BiPVT Building integrated Photovoltaic Thermal BiOPV Building integrated Opaque Photovoltaic

BiOPVT Building integrated Opaque Photovoltaic Thermal BiSPV Building integrated Semitransparent Photovoltaic

BiSPVT Building integrated Semitransparent Photovoltaic Thermal c-Si crystalline Silicon

DL Daylight

EC Evaporative Cooling

EE Embodied Energy

EPBT Energy Pay Back Time EPF Energy Production Factor ETC Evacuated Tubular Collector

FF First Floor

GF Ground Floor

HVAC Heating, Ventilation and Air Conditioning LCCE Life Cycle Conversion Efficiency

NV Natural Ventilation

OPV Opaque Photovoltaic

OPVT Opaque Photovoltaic Thermal

PC Passive Cooling

PV Photovoltaic

PVT Photovoltaic Thermal

SBC Sodha Bers Complex

SF Second Floor

SPV Semitransparent Photovoltaic

SPVT Semitransparent Photovoltaic Thermal

TF Third Floor

(29)

xxv TLL Thermal Load Levelling

WT Wind Tower

References

Related documents

Figure 4. 4 Variation in the a) MH discharging rate, b) Heating provided, c) MH cylinder temperature, d) MH cylinder weight for different values of inlet temperature.. of water at

This is to certify that the thesis entitled “Performance Evaluation of Hybrid Photovoltaic Thermal (PVT) Systems: A Comparative Study”, being submitted by Rajeev

An analytical expression for mass flow rate and an electrical efficiency of photovoltaic thermal (PV) module for partially covered photovoltaic thermal compound parabolic

For crop drying, a photovoltaic thermal (PVT) mixed mode dryer has been designed and constructed at Solar Energy Park, Indian Institute of Technology Delhi (IITD), New Delhi,

In the energy and exergy analyses of the Rankine-KCS11 integrated double cycle system in which KCS11 is coupled with the Rankine cycle of a 67.5MW unit of a coal fired

Energy, exergy, economic and environmental (4E) analysis has been performed on a conceptual cycle where in solar aided feed water heating (SAFWH) has been integrated with

Irrespective of the solar cell type, the semitransparent PV modules have shown higher net energy loss rate (L en ) and net exergy loss rate (L ex ) compared to the

In the present thesis an attempt has been made to develop simplified methodology and mathematical model to evaluate on-field daily and subsequently monthly and then annual