• No results found

Direct CP violation in neutral kaon decays

N/A
N/A
Protected

Academic year: 2022

Share "Direct CP violation in neutral kaon decays"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

!"""""#$%&'())*+%,'

-.""*/ " " " "

012'"3 4 ""0'5" "26

¼

7 )

"""3"", -"""

&&8 "5""0'5","26

¼

79687  

:"/ " "" " ,"";

<(" """;5

:"0'5"="3

!!!" #$%%&&'!((!

' "% ! #)"(& *(+&&)&' !(

(! , - )!&&& ! #&"( (!.& " /&

)&, 0) ))$#' 1& )!&& & (&!( . $ (0

%#&()#2(.)!&.#&"()#34455665  

768' *&(! & (&!( .)%" (%#& ( 9"1(

"&%)#

¼

, :! &"& +!*! ((!!"&

#&"#&$)#&) "&%)#("(!(%

748, (' &(( #( !*/!& (&

) ( * "

¼

)!& "% !#) * $)0

#&, ;'!##)%)##!!"#&"#*

%&&!&(*0!(&.&#!&(!!"($&!

&+!, ;*$)#& !.) ((&"&#&"#

¼

< 7=8(;>?78,

$)#.'&! #&"("9"!&"

&#""&.%&((!. #(& "/& *)&' (

¼

'

(2)

7

K

cristal

~ 114 m

~ 126 m Ks tagging station

S

0 0 00 0 00 00 0 0

1 1 11 1 11 11 1 1

Proton momentum : 400 GeV/c Cycle time : 16.8 s SPS spill length : 5.2 s

(AKS)

0 00 0 00 00 0 0

1 11 1 11 11 1 1

(~ 40 m long) 6.8 cm Target

K anticounter Ks

0.6 mrad

Last collimator

Decay Region Target

Bent

~2.4 10 protons per spill 12

Muon sweeping

( ~7. 10 protons per spill)

not to scale !

L NA48 Detector

K S

K L

Drift chamber 3 Drift chamber 2

Drift chamber 1 Drift chamber 4

Hadron Muon anticounter

hodoscope Neutral

hodoscope Charged Kevlar window

Magnet

Beam pipe

window

Helium tank

9.2 m 5.4 m 7.2 m

Beam monitor

10.7 m Aluminium

2,4 m

24.1 m

34.8 m KL target

KS target 97.1 m 217.1 m

Veto counter 6 Veto counter 7

2.7 m LKr

calorimeter calorimeter

1.8 m

"5, 6" " 7 012 " 3 4

6"7"*""6;"7"," ";

3

 

 

6@

¼

6

"&$)% !!&&.&#!+!& !"% &#*.

)!&&&,

$)# ' (!.&

# *! #&')0

("!( . 55A>)& *%&&)(.645# 1%"6' '

& ( &#(!.%( %&( (!& (*&# 1%"

6'%,

(!.&(&%"&(#

.!!(! *(0

!.# ( #& )& )("!%

#

#( .(!.

$)&& &#&

 

#(, (##2(+!

!!)! (" (+#&'

(!.& *%( &"!

))#&"&#/%&)!&#&

,

:!.&

 

#&"(.#%!&)!#!#)&("

(!#&* () #%, 9"(!.) !#%! !#0

' % (&!) 6464 &). ( " !&' & "&(

!&"!

(!.&,

;%%&(&%(("!55/2)!&&)!#

&&65/2,

; %%

(!.& )& %" &"#& 4 !&'

2( !'! (/#! &"&%/0")&,

9"&!#%!%.()&%B5A>'!%.

!# #)! &# 4B !#' $ )& $!(% B

#&( &&&$)/& ! & &)C!&,

%(%%&* &, 1& 9"& !!(!

& &%&< !!(! ))& 9"(& !%( %% (&!)'

!# #")!.(!#!%.()& =BA>,;

&!( !&&& & 0"(%&.!"&)!&&&!&"!%

!/&,

;%%&!!)(&9"#&!/&' $(!&"!(

#&&9"."1(,

@54 !"#

(3)

χ 2

Weigthed events

K L K S

Signal region Control region

K L candidates

K S (norm to K L ) + Ke3 + Kµ3 + collimator K S (norm to K L )

Ke3 Kµ3

collimator scattering

p T /2 (GeV/c) 2

Weighted events

Signal region

-

", /

;

"

43;6"7 0

>"

43;"

 

6;"7

?

(!.&'## .=D655A>)&*&

& "&(, %"( $ )&

& !&"!( "&% &* %&

(#)!!(& , ; %&"

&BB!# (

/%. & 5,BE, #&&& 0)& !#)"(, ;

)%& &!(

& .9"% &"# ) #&&&& !&&

("

#&&((+!2, ;

#&&&!&"!(#

(!.&* &"**6 F>, #& &#( #

#&%!!&!!"&(&/**!!"!.445)&,

;!/%"( "#(!#& "9".#

=

(!.&( &

%.&"))&&( .9"% ((&*&* = & "(

#, #%!/%"(&# (.!&(

"##&&&

)&!, 1%"4',

;

 

(!.& !&"!( # !/& "&% & (

!#&'#%!1(#)((!&%#, %

&"

& B5 !# (

& 4 ##, ; / #&& & !&"!( &

#(*!!"!.4,BF>, #&% .!%((&!)*

!!"!.=55&,

%(!/%"(

(!.&!#&#G  

(&&"))&&("&%

&*!&##)& (% )!&, ?

!#&

#&#)!(!.&(&C!(.!"5'&#" '

!&+! #&&(!"

1%"4'%,

?

 

#('

(

(&%"&( . & & $ )0

&, ?

#(' * ' .

& !&"!( ( (&

# # # %% !, 1%" 6' ( 9" & !!(!'

*4&'* #'"&(&%"&%

#

, .&#!&

(4)

$

15"6

 

7 15"6

 

7

8

 

8

 

*

(%%%!##%%%Æ!!.&#). %&

#!!(!#&%%%!!(!!(!*)(

#, - +!& &#( "&% $ (1! # !%( #(

(!"((&.&#!,

!!!)! ))"&()(&

(

(

0

#&(+'!!&((!!"(+!!!)!&0

*

(

, :&"& &

"&*%(

"&% #& ( !!"% ! #, ; )!(" *&!!/(

( &.&#! *& !!"( "&% % &&!& F 65

(!.&)#(,

&.&#! +!& !"% " ( & !"(

!# &!%

#' & %. ( (&! &!&

# #%&' %. /%# !"&&' 0. 0

%.&)&'0A"&&&%.&)&(!!(+!&("

&.#()(!(&.(+!*

(

#&,

&&!& !&"!(( !!)( &"&( (#

#"& @B#!, 6, ?%"=&"##2&&"!&

&.&#!&(!!& , & &#C&.&#!+!&

!# #!!)!(!%!/%"(,

;1 " )#(.0

&

¼

36H65I6B65  

36H4465  

4

*1&&)"&&!#4&#)&'&!(&&.&#!

# &&!& ! &#) "&( & &# ( ( &

!" &.&#! &, .

¼

& "!

%. *&!".!!/(( %. ()(! *&"(, &'

1(&%(!&&!. &"&#(...*6IIH (

4556,

((

¼

&)&( 1%"=%%* %(

%#" $)#&74D8'

¼

36@H6@65  

, A( %0

# * $)#& ! C"(%( # 1%", $&!

(!

(!.&&"&) (') (%*.)!&"#0

., )!!. $!"(&&J& &")*/ .)&& 7B8

*!&&"#(

¼

35,

(5)

R stability against cut variations

R - R standard (10 -4 ) Acceptance Accidentals Tagging Energy scale Neut. Backg.

Charg. Backg.

Beam Halo total syst. error

Estimated systematic for correction under test outgoing tracks

ingoing tracks no mom. asym. cut mom. asym. < 0.2 track radius > 20 cm γ radius > 20 cm no Ks/Kl intensity weighting no extra clusters in π + π - reject DCH-ovfl ± 350 ns reject DCH-ovfl ± 234 ns accept MBX dead time accept QX dead time tagging window ± 1.5 ns tagging window ± 2.5 ns τ < 2.9 τ S τ < 3.8 τ S χ 2 < 9.9 χ 2 < 17.1 p' T 2 < 1.5x10 -4 p' T 2 < 3.0x10 -4

∆M ππ < 2 σ

∆M ππ < 4 σ Cg < 7 cm Cg < 11.5 cm

-20 -10 0 10 20 30

NA31 E731 KTEV(96,pub.) KTEV(96-97,prel.) NA48(97-99) NA48(2001) NA48

ε , / ε

× 10 -4

- " " " " ,

""."5"4""4"

"" "","4"4"""

"6"7,""26

¼

76;"7

& &!##. /*' $)(%

¼

#& #$#&

"09"/)&

3665'%!#)&+! #0

' &)& K 3 64 ( K 3 =4 )& 7@8, ; 1& )

& (#(. %"! )%" )!&&( &!( .

)%",

; & )) &9" )9"/#&& ( (%

!! **'(" (&"! !*! & &&0

, ! ) 9"/ #&& & (. /* )& * !!"0

!. B A>L!

768 ( )%" !!& /* %* %(

)!&'%!"!.!#&# %0%)#$

#&("&%!&*! !!"(0)" .,

; !"$)# )!&

¼

& . "&" "

#) #F#$)#!"&"%!"&%

)& &!"& * )!", +& *(& &# M: !&

#!!!"&&((&&!.&"&7H8'#.!"&

"&%"!())$#&'& 9"!( ))$#' (

#/ )#!#)". !, ? $#)' !".(

"&

¼

% (!&&*2*&'*!

&%$)#78, (('!"

¼

# 1

&!&&&#( ( #.&#(" .%

##)& 1 &,

(6)

!

?@ '":"AB C#;, %67

?@ B AD &'6&&7

18B (CA44 ' 6&&7

?@ *B ( 67

*B E2D" &(##&867

?@ C-B5)#" )6&&&7

C-B5)#" %'F67

?F@ (+" F6&7

?@ A0D ((5E'560'G/&&&7

?8@ E( %(67

F67

?*@ 0')'0BE3)"H*

2D0B-D )"H8F

@5@ !"#

References

Related documents

In this case, due to conservation of extra dimensional momentum, there are no vertices with only one KK state, i.e., coupling of KK state of gauge boson to quarks and leptons

Another class of model for CP violation is the multi-Higgs doublet model. If there are more tha0a one Higgs doublets, the neutral scalar couplings to the quarks

After a general discussion on the quantities which can measure C P violation and on the implications of the CPT theorem, various possibilities of measuring C P violation

The observation of a linear correlation between track-etch rate and total energy-loss rate of 4°Ar in Lexan has not only provided a detector calibration curve

In the present paper the experimental data are presented for the influence of different annealing conditions on bulk etch rate, track etch rate, etch pit diameters,

Relationship between track diameter and removed layer for 1]2Xe-ion tracks in Lexan annealed for 10 min at different temperatures.. Relationship between track diameter and

Variation of a observed track length with etching time; b corrected track length with etching time; for 1~Ar having the energy 4.22 MeV/N at an angle 10 °.. It is seen

The total etchable track length for very heavy nuclei which are not available at present with sufficient energy to produce volume tracks in crystals, has been