• No results found

K e y w o r d s : V elocity c o rre la tio n coefficient, T e rn a ry e le c tro ly te , D iffusion C oefficient, R a d io a ctiv e tra c e r

N/A
N/A
Protected

Academic year: 2023

Share "K e y w o r d s : V elocity c o rre la tio n coefficient, T e rn a ry e le c tro ly te , D iffusion C oefficient, R a d io a ctiv e tra c e r"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

I J P

A

— an international journal

An e stim a tio n o f v e lo c ity c o rr e la tio n co efficien ts in te r n a r y e le c tro ly tes

H a im a n ti C h a k r a b a r ti a n d S h re e k a n th a Sil S a h a I n s titu te of N u c le ar P h y sics

S e c to r 1, B lo ck -A F , B id h a n n a g a r, C a lc u tta - 700 064

A b s t r a c t : T h is w ork gives an d stim a te of th e velocity c o rre la tio n coefficients for te r n a ry e le c tro ly te so lu tio n s ( th e sy ste m m ay have tr a c e r ion as an y one of th e c o m p o n e n t), o rig in a tin g fro m th e lin e a r resp o n se th e o ry u tiliz in g th e m e a su re d tr a n s p o r t coefficients in o rd e r to g et a d e e p e r in sig h t in to th e m ic ro d y n a m ic s tr u c tu r e o f th e so lu tio n . A ssu m in g O n s a g e r’s re la tio n to b e valid we o b ta in te n se ts o f v elo city c o rre la tio n coefficients for C s ion tra n s p o rtin g in a q u e o u s so lu tio n o f C sC l a n d KC1.

K e y w o r d s : V elocity c o rre la tio n coefficient, T e rn a ry e le c tro ly te , D iffusion C oefficient, R a d io a ctiv e tra c e r.

P A C S n u m b e r : 66.0, 05.60

I n t r o d u c t i o n

T h e v elo city c o rre la tio n fo rm a lism evoked from th e lin e a r resp o n se th e ­ ory is o f g r e a t im p o r ta n c e fo r en v isag in g th e m o le c u la r m o tio n a n d th e p a rticle -p a rticle in te ra c tio n in e le c tro ly te so lu tio n s, sp ecially in c o n c e n tra te d solutions (few te n th m o la r o r h ig h e r th a n t h a t ) w h ere O n sa g e r’s th e o ry a n d its ex ten sio n s fails to give re a l p h y sic a l p ic tu re . E sse n tia lly th e w orks of McCall a n d D o u g lass [1] a n d D ouglass an d F irsch' [2] w hich show ed first how m u tu a l a n d self diffusion d a ta can b e in te r p re te d in te rm s of in te g ra l over velocity self c o rre la tio n fu n c tio n s a n d velocity cross c o rre la tio n fu n c ­ tions. Since t h e n th e field h a s b e e n ex ercised w ith g re a t in g e n u ity , b u t m o st

© 19j)5 IACS

(2)

134 Haimanti Chakrabarti and Shreekantha Sil

o f th e s e w orks deal w ith b in a ry sy stem s a n d even i f w ith m u ltic o m p o n e n t sy stem s no b rid g e was m a d e to cover th e d ifferen ce o f t h e fra m e s for the fluxes in th e lin e a r resp o n se th e o ry a n d in th e m e a s u re m e n t o f t h e tra n s ­ p o r t coefficients. In th is c o n n e ctio n it is w o rth y t o m e n tio n t h a t in lin ear resp o n se th e o ry th e sy ste m s tu d ie d is in e q u ilib riu m : t h e m o m e n tu m ex­

change w ith th e b o u n d a rie s is zero a n d so th e b a ry c e n tr ic re fe re n c e fra m e is th e n a tu ra l choice; w h ereas, in la b o ra to ry e x p e rim e n ts t h e b o u n d a rie s of the sy stem stu d ie d ex ch an g e m o m e n tu m w ith th e s o lu tio n a n d th is d e p e n d s on th e design of th e e x p e rim e n ta l set up. It is th e p io n e e rin g w o rk o f S chbnert [3] which first d e lt w ith th e p ro b le m of c o rre la tin g th e fra m e s o f references.

H e rep laced th e b a ry c e n tric referen ce fra m e by th e so lv e n t fix ed fra m e of ref­

erence w hich tak e s in to acco u n t of th e e x p e rim e n ta l b o u n d a r y c o n d itio n s.

H ow ever, th a t w ork was also r e s tric te d to th e case o f b in a r y s o lu tio n , with th e b e a u ty of in c o rp o ra tin g th e c o n c e p t o f in tr a - ( tr a c e r ) d iffu sio n in to the irrev ersib le th e rm o d y n a m ic s to reg ain th e K u b o re la tio n s . S o t h e w ork does n o t give d ire c tly an e s tim a te of th e v elo city c o rre la tio n co efficien ts for more g en eral situ a tio n o f (i) lim itin g diffusion o f t h ir d sp e cie s in a s u p p o rtin g ele c tro ly te so lu tio n , (e.g. T ra c e r A in th e s o lu tio n o f B C ) o r ( « ) a n y of the te rn a ry (m ix tu re of tw o b in ary e le c tro ly te h a v in g o n e c o m m o n c o n s titu e n t or any ele c tro ly te w hich d isso ciates in to th re e d iffe re n t io n ic sp e c ie s in so­

lu tio n . In th is w ork we a re g iving an e s tim a tio n o f th e v e lo c ity co rre la tio n coefficients for any of th e a fo re m e n tio n e d t e r n a r y s y s te m s in te r m s o f the e x p e rim e n tally m e a su ra b le tra n s p o r t coefficients. T h e g e n e ra l m orphology is b ased on tw o w orks - one from S c h o n e rt [3] a n d t h e o t h e r fro m M iller [4].

B esides o ur a tt e m p t t th e w ork of R a in e ri a n d T im m e rm a n [5] a lso d e a ls with th e V C C ’s in te rn a ry e le c tro ly te s b u t th e e q u a tio n s t h e r e n e e d t o re w ritte n in term s of e x p e rim e n ta l q u a n titie s to be u se fu l w hich is r a t h e r co m p ic ate d .

T h e o r e t i c a l :

O u r sy stem s consists of th re e different s o lu te c o m p o n e n ts i = 1)2,3 (an y one am o n g th e s e m ay b e th e iso to p e o f e ith e r o f t h e tw o ) disso lv ed in

(3)

the sam e so lv e n t, i = 0. T h e e n tro p y p ro d u c tio n a ol th is s o lu tio n in th e iso th erm al iso b a ric c o n d itio n is given by

3

T o = £ ( 7 ') w * . ( ! )

i=0

where w d e sig n a te s th e velocity o f th e referen ce. T h e (Ji)w a n d X ; a re th e co rresp o n d in g fluxes a n d forces o f th e tth c o m p o n e n t. F o r e x a m p le in th e solvent fixed referen ce fra m e

3

Ta = ^ ( J , ) 0X j [because (J0)o = 0] (2 )

i

and in th e b a ry c e n tric referen ce fra m e

3 v

T o = (3 )

i = 0

where v is th e v elo city o f th e so lv en t. A s th e fluxes (./*)<,) o f th e so lu te c o n stitu e n ts a re re fe rre d to th e v elo city of th e so lv e n t, th e p h en o m e n o lo g ic a l tra n s p o rt e q u a tio n s of th e irre v e rsib le th e rm o d y n a m ic s w h ich d e sc rib e o u r system for a flow lin e a r alo n g th e sp a ce c o -o rd in a te x a re

(Ji)o = ' t L^ X k (t = 1 ,2 ,3 )

k = 1

Q

with X k = + zkF<t>)

or, in m a tr ix n o ta tio n ,

An estimation of velocity correlation coefficients in ternary electrolytes. 135

J

0 = L X (4)

where L{k a re t h e p h e n o m e n o lo g ic a l coefficients c o n s titu tin g L , &re th e chemical p o te n tia l, zk a re th e sig n e d ch a rg e n u m b e r o f th e c o n s titu e n ts k , F is th e F a ra d a y c o n s ta n t a n d <(> is th e e le c tric a l p o te n tia l.T h e p h e n o m e n o ­ logical coefficients Lik o b e y th e O n s a g e r’s re c ip ro c ity re la tio n s . T h e s e co­

efficients c a n b e r e la te d to th e c o n v e n tio n a lly u se d t r a n s p o r t coefficient:

(4)

th e c o n d u c ta n c e A, th e tra n sfe ra n c e n u m b e rs U a n d t h e s o lv e n t fix e d th e r ­ m o d y n a m ic diffusion coefficients a n d th e v o lu m e fix ed in te rd iffu sio n coefficients D ,*.

Now, as we consider th e case from th e view p o in t o f t h e lin e a r response th eory, th e reference velocity is th e v elo city o f th e c e n te r o f m a s s , w = v and as th e to ta l m ass flow is zero

(J0)v ~

“ 77" (5)

m ° .= i

\

A gain from G ib b s-D u h em e q u a tio n we have 3

£ C , - * ; = 0 (6)

i=0

Now e lim in a tin g (J„)v a n d (A ,,) from e q u a tio n (3 ) a n d we re w rite th e en- tro p y p ro d u c tio n e q u a tio n in th e b a ry c e n tric fra m e as

T o

=

j z W . Y i

. (7)

1=1 136 Haimanti Chakrabarti and Shreekantha Sil

w here Yi = is th e force c o n ju g a te t o t h e flow W ith th is th e tra n s p o r t coefficient m a tr ix in th e b a ry c e n tr ic re fe re n c e fram e com es to b e,

ft = PtL@ (w h ere ik th e le m en t o f /? is = $,•* +

K now ing th e ft m a tr ix , th e n o rm a lise d v e lo c ity c o rr e la tio n coefficient / , ; can b e c a lc u la te d u sin g th e re la tio n

/ o = < v,o ( 0 ) . u ^ ( t ) > dt (*'»>

RTSljj _ DfSij

C{ C j C{

0 , 1 , 2 , 3 ) (8)

w here, f t tJ is th e tra n s p o rt coefficient m a tr ix e le m e n t o f i t h ro w j t h co lu m n in th e b a ry c e n tric referen ce fra m e , D* is th e in tr a ( tr a c e r ) - d if f u s io n coefficient, ( h ere th e co n cep t of th e lab e lle d c o n s titu e n ts h a s b e e n in tr o d u c e d in to the form alism o f irre v ersib le th e rm o d y n a m ic s ), V is v o lu m e o f all t h e ensem ble, is th e velocity of ath p a rtic le o f th e ith sp e cie s in t h e b a r y c e n tr ic frame of reference, R is th e u n iv ersal gas c o n s ta n t, N0 is th e A v a g a d ro N u m b er.

(5)

(37

Experimental

T h e 134Cs (tr a c e r ) diffusion coefficient for th e CsCl an d K C l a q u e o u s solution h av e b e e n m e a s u re d in o u r la b o r a to r y over th e c o n c e n tra tio n ran g e (J.009 to 10.OM [6] a n d 0.001 to 4.0M [7] resp ectiv ely . T h e se diffusion d a t a coupled w ith th e o th e r tr a n s p o r t d a ta e x istin g in th e lite r a tu r e a re u tiis e d to calculate th e v elo city coefficients for each sy ste m u p to c o n c e n tra tio n 4.0M to the g e t profile of th e c o n c e n tra tio n d e p e n d e n c e of th e V C C s. T h e

Concentration / Mol. dm"3

F ig .l C o n c e n tr a tio n d e p e n d e n c e o f th e ve- locity c o r r e la tio n c o e ffic ie n ts w h en 1MC s tra n sp o rtin g in a q u e o u s s o lu tio n o f C sC l.

diffusion coefficients are m e a su re d in o u r la b o ­ r a to r y by a ra d io a c tiv e tra c e r te c h n iq u e u til­

isin g th e slid in g cell m ec h a n ism . T h e d e ta ils a re given in an e a rlie r w ork [6]. T h e c o n c en ­ tr a tio n d e p e n d e n c e of th e te n se ts of c a lc u ­ la te d V C C for each sys­

te m h ave b e e n show n in fig .l a n d fig.2. T h e cu rv es w ere e x te n d e d to m e e t th e diffusion coefficient axis. Now we e n d e a v e r to in te r ­ p r e t th e tr e n d e x h ib ite d in th e c o n c e n tra tio n d e ­ p e n d e n c e of V C C on a m icrodynam ical level. T h e velocity c o rre la tio n coefficients for th e ions having sam e ty p e of c h a rg e ( / u , /2 2, /3 3, / i2) go th ro u g h a m in im a as co n ­ centration o f th e e le c tro ly te in creases. A t h ig h er c o n c e n tra tio n s w h ere a re the fluidity is sm a ll all m o tio n a l p ro cesses a re d a m p e d o u t ra p id ly an d so integrals over th e tim e c o rre la tio n fu n c tio n s will b e sm a lle r. V elocity cor­

relation coefficients for io n s h a v in g o p p o s ite ty p e s of ch arg es /1 3, /2 3, have a marked a s sy m e try in th e b e h a v io u r. T h e m o st in te re s tin g is th e c o n c en ­ tration d e p e n d e n c e of th e w a te r-w a te r coefficient. I t h a s th e c o m p le te ly

(6)

138 Haimanti Chakrabarti and Shreekantha Sil

o p p o site profile in th e two system s. T h e e x p e rim e n ta l d a t a is in acco rd an c w ith th e d isto rte d hydrogen bond m odel o f liq u id w a te r.

O ne inference can be draw n from an evalua­

tio n o f th e p e rtie n t ex­

p erim en tal d a ta is th a t th e electrical cu rren t flu ctu atio n s in high con­

cen tratio n s of th e elec­

tro ly te solutions con­

sidered h ere are such th a t, if an in sta te n e o u s flu ctu atio n is for in ­ stan ce p ro d u ced by th e m otion of th e positive charges th en th is flu c tu ­ ation does n o t decay by a reversal of th is pos­

itive cu rren t to g eth e r w ith th e superposition of a flow of negetive charge in th e direction

F ig .2 C o n c e n t r a t i o n d e p e n d e n c e o f t h e v e ­ lo c ity c o r r e la tio n c o e ffic ie n ts w h e n 134Cs t r a n s p o r t i n g in a q u e o u s s o l u t i o n o f KC1.

of original positive cu rren t flu c tu a tio n , r a th e r , th e p o sitiv e c u rre n t flows alm ost com pletely back.

A d etailed p ictu re of th e m icroscpic in te ra c tio n s b e tw e en p a irs of ions can be b u ilt up from th e consideration of th e s e v elo city c o rre la tio n coeffi­

cients. It can be shown also how self diffusion a n d c o n d u c tiv ity behaviour of electrolyte solution would be affected by th e se ionic in te r a c tio n s . However we shall defer this m ore d etailed analysis u n til a la t e r p a p e r.

Acknowledgement

ne of th e a u th o r (H C ) likes to th a n k C .S .I.R . for fin a n c ia l a s sista n c e during th e period of th is work.

(7)

R eferences

[1] D. W . M cCall and D. C. Douglass, J. Phys. Chem . 71 987 (1967).

[2] D. C. Douglass and H. L. Frisch, J.P hys. Chem . 73 3039 (1969).

[3] H. Schdnert, J. Phys. Chem . 88 3359 (1984).

[4] D. G. Miller, J . Phys. Chem . 71 616 (1967).

[5] F. 0 . R aineri and E. 0 . T im m erm ann, JCS Faraday Trans. 80 1057 (1990).

[6] H. C h ak rab arti, Appl. R adiat. Isot. 45 171 (1994).

[7] H. C h ak rab arti and S.Sil, to be com m unicated (1994).

References

Related documents

The water level in the range of 0 – 2 m bgl has been observed in only 28% of HNS wells, spatially covers as small patches at many locations (Sitamarhi, Madhubani, Araria,

An ecad of a plant species is a population of individuals which although belong to the same genetic stock (genetically similar) but differ in vegetative

This includes transactions involving credits created for the voluntary markets (such as Verified Emission Reductions or Carbon Financial Instruments) as well as transactions in

success, and scientific and technological applications. An important concept which distinguishes the microprocessors from other machines is the programrnibility. A't element of

IRMRA has modern state of art scientific and analytical facilities and is fully equipped with infrastructure for design &amp; development, testing and

The Chief Mechanical Engineer has one or more deputies to assist him in his work of administration and control. One such deputy is called Works Manager or Deputy Chief

If SA is the relative increase in radius of a bound nucleon compared to a free one, due to the uncertainty principle, the momentum distribution (x distribution) of bound nucleons

In the present work, we have calculated ot for positron impact on all the alkali metals using an optical potential method. The effect of Ps formation is not taken