• No results found

Functional parcellation of the hippocampus based on its layer-specific connectivity with default mode and dorsal attention networks

N/A
N/A
Protected

Academic year: 2022

Share "Functional parcellation of the hippocampus based on its layer-specific connectivity with default mode and dorsal attention networks"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Functional parcellation of the hippocampus based on its layer-specific connectivity with default mode and dorsal attention networks

Gopikrishna Deshpande

a,b,c,d,e,f,g,

, Xinyu Zhao

a,h

, Jennifer Robinson

a,b,c,d

aAU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA

bDepartment of Psychological Sciences, Auburn University, Auburn, AL, USA

cAlabama Advanced Imaging Consortium, Birmingham, AL, USA

dCenter for Neuroscience, Auburn University, Auburn, AL, USA

eKey Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China

fDepartment of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India

gCentre for Brain Research, Indian Institute of Science, Bangalore, India

hQuora Inc., Mountain View, CA, USA

a r t i c le i n f o

Keywords:

Resting state functional connectivity Hippocampus

Parcellation

Layer-specific connectivity Default mode network Dorsal attention network HERNET model

a b s t r a ct

Recentneuroimagingevidencesuggeststhattheremightbeananterior-posteriorfunctionaldifferentiationofthe hippocampusalongthelong-axis.TheHERNET(hippocampalencoding/retrievalandnetwork)modelproposed anencoding/retrievaldichotomywiththeanteriorhippocampusmoreconnectedtothedorsalattentionnetwork (DAN)duringmemoryencoding,andtheposteriorportionsmoreconnectedtothedefaultmodenetwork(DMN) duringretrieval.EvidencebothforandagainsttheHERNETmodelhasbeenreported.Inthisstudy,wetestthe validityoftheHERNETmodelnon-invasivelyinhumansbycomputingfunctionalconnectivity(FC)inlayer- specificcortico-hippocampalmicrocircuits.Thiswasachievedbyacquiringsub-millimeterfunctionalmagnetic resonanceimaging(fMRI)dataduringencoding/retrievaltasksat7T.Specifically,FCbetweeninfra-granularout- putlayersofDANwithhippocampusduringencodingandFCbetweensupra-granularinputlayersofDMNwith hippocampusduringretrievalwerecomputedtotestthepredictionsoftheHERNETmodel.Ourresultssupport somepredictionsoftheHERNETmodelincludinganterior-posteriorgradientalongthelongaxisofthehippocam- pus.WhilepreferentialrelationshipsbetweentheentirehippocampusandDAN/DMNduringencoding/retrieval, respectively,wereobservedaspredicted,anterior-posteriorspecificityinthesenetworkrelationshipscouldnotbe confirmed.Thestrengthandclarityofevidencefor/againsttheHERNETmodelweresuperiorwithlayer-specific datacomparedtoconventionalvolumedata.

1. Introduction

The hippocampus, located in the medial temporal lobe (MTL), plays important roles in many brain functions including episodic memoryandspatial navigation(Das etal., 2011; Yushkevichet al., 2010; Heckemann et al., 2011). Investigation of functional special- ization within thehippocampus has receivedincreased attention in neuroimaging.Theabnormalitiesofthehippocampushavebeeniden- tifiedin many neuropsychiatric disorders,includingAlzheimer’s dis- ease(Lukiw,2007; Zhou et al., 2008; Scheff and Price,2006), ma- jor depression (Campbell and MacQueen, 2004; Stockmeier et al., 2004;Rossoetal.,2005;MacQueenandFrodl,2011),post-traumatic stressdisorder(Asturetal.,2006;JavidiandYadollahie,2012),and schizophrenia(Harrison,2004;Heckers,2001;Grace,2012).Therefore

Correspondingauthorat:AUMRIResearchCenter,DepartmentofElectricalandComputerEngineering,AuburnUniversity,560DevallDr,Suite266D,Auburn, AL36849,USA.

E-mailaddress:gopi@auburn.edu(G.Deshpande).

abetterunderstandingofthefunctionalspecializationwithinthehip- pocampushasthepotentialtoleadtoabetterunderstandingofthese disorders.

Recently,manystudieshavepositedthattheremaybeafunctional differentiationalongthelong-axisofthehippocampus(Robinsonetal., 2015; deWaeletal.,2018).Lepageetal.(1998)performed ameta- analysisofpositronemissiontomography(PET)ofepisodicmemoryand discoveredanorderlyfunctionalanatomicpatterninthehippocampus.

Morespecifically, theanteriorportionswereprimarilyactivatedwith episodicmemoryencoding,whereastheposteriorportionswereprimar- ilyassociatedwithepisodicmemoryretrieval.Thismodelisreferredto asHIPER(hippocampusencoding/retrieval)model.

TheHIPERmodelhasreceivedsupportfrommanyrecentstudies.

Spaniol et al.(2009) conductedmeta-analysesof event-relatedfMRI studiesofepisodicmemoryandrevealedananterior-posteriorgradient

https://doi.org/10.1016/j.neuroimage.2022.119078.

Received4June2019;Receivedinrevisedform29January2022;Accepted7March2022 Availableonline9March2022.

1053-8119/© 2022TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

inthehippocampalactivationsassociatedwithencodingandretrieval.

Nadeletal.(2013)andhiscolleaguescomparedtheanteriorandposte- riorhippocampalactivationsduringretrievalofdifferenttypesofspatial information.Theyfoundthatthereisafunctionaldifferentiationalong thelongitudinalaxisofthehippocampuswiththeposteriorhippocam- pus being crucialfor precise spatialbehavior, andthe anterior hip- pocampusbeinginvolvedincontextcoding.BaumannandMattingley (2013)examinedretrieval-relatedactivityinthetaxidrivers’hippocam- pususingfMRIdataandfoundthattaxidriverswithasmallanterior hippocampushaddifficultyencoding newspatialassociations.More- over,Kim(2015)conductedameta-analysisandrevealedthattheen- codingofsensoryinputinvolvedmainlytheanteriorhippocampusand theexternalattentionnetwork,whereasretrievalengagedmainlythe posteriorhippocampusandtheinternalattentionnetwork.Thismodel wasreferredtoastheHERNET(hippocampalencoding/retrievaland network)model.

Memory encoding is inherently linked with external atten- tion, whereas retrieval is intrinsically related to internal attention (Kim,2010;Chunetal.,2011).Manystudieshaveidentifiedtwobrain networks,i.e.,thedorsalattentionnetwork(DAN)anddefaultmode network(DMN),that areclosely associated withexternal andinter- nal attention,respectively (Buckner etal., 2008; Corbetta andShul- man, 2002). Therefore, the HERNET model predicts that the ante- riorhippocampusandregionsoftheDANco-activateduringencoding whiletheposterior hippocampusandregionsof theDMNco-activate duringretrieval. InfactKim(2015) meta-analysisconfirmsthis pre- diction. However, evidenceconflicting the HERNET model also ex- ists.This includesmeta-analysesofimagingstudieswhichcontradict Kim’sfindings(SchacterandWagner,1999),suggestionsthatthean- teriorhippocampusisactivatedbynovelty(whichispurportedlymis- taken forencoding sinceencoding tasks typicallyuse novel stimuli) (Kumaran andMaguire,2006;Poppenketal.,2008;Zweynertetal., 2011;Poppenketal.,2010a2010b)andalternativemodelsoffunctional specializationwhichattribute“hot” processing(emotion/motivation)to anteriorhippocampusand“cold” processing(cognition)totheposterior part(Murtyetal.,2011;Robinsonetal.,2015;Robinsonetal.,2016).

Giventhisstateofaffairs,wesetouttodirectlytesttheHERNETmodel usingfunctionalconnectivitybetweenthehippocampusandDAN/DMN regionsduringmemoryencodingandretrievaltasks.Unlikeprevious studieswhichemployedvoxel-levelanalysisfromdataobtainedatcon- ventionalfieldstrengths(≤3T),weemployedfMRIwithultra-highspa- tialresolution(sub-millimeter)obtainedat7T.Thisallowedustoin- vestigatelayer-specificmicrocircuitsbetweenDMN/DAN regionsand thehippocampuswiththehypothesisthattheywouldprovideafiner grainedcharacterizationof theconnectivitybetweenthem, whichin turnmayprovidemoredefinitiveevidencefororagainsttheHERNET model.Byfinegrainedcharacterization,wemeanthattheconnections betweenthehippocampusandcorticalregionsin theDMNandDAN areanatomicallylayer-specific.Yet,thefunctionalconnectivityanaly- sesofthesecircuitsunderlyingtheHIPER/HERNETmodelsarecarried attheconventionalvolumelevel,whichignoresthisbiologicalreality andacceptsthelossofspatialspecificity.Ourpointisthatcurrenttech- nologyallowsustoovercomethis limitationby acquiringdatawith higherspatialspecificity,whichcouldprovideevidencefororagainst theHIPER/HERNETmodelwhichisclosertothebiologicalrealityof theselayer-specificcircuits.Wewouldalsoliketonotethatwhilethe ventralattentionnetwork(VAN)alsocontributestotheallocationofat- tentionalresourcestomemoryprocessing,werestrictourselvestothe DANsinceweareinterestedinspecificallytestingtheHERNETmodel whichhypothesizesonlytheDAN.

Previousinvasivestudiesinanimalshaveshownthattheconnec- tionsbetweenthehippocampusandDAN/DMNprimarilyinvolvecor- ticallayersIIandV,withlayerVofthehigherordercortex(frontal andparietalcortices)projectingtothehippocampus,whereaslayerII ofhigherordercortexreceivingthesignalbackfromthehippocampus (SwansonandCowan,1977;ThomsonandBannister,2003).Thislayer-

specificpathway betweenthehippocampusandDAN/DMNisnotex- clusivesincepathwayswhichoriginate/terminateinotherlayersofthe cortexmayalsocontributetothehippocampalinputoroutput.Thisis notsurprisinggiventhehighlycomplexunderlyingmicrocircuitryand giventhatsignalsbetweenanytwobrainregionscanrelayviamulti- plestructuresincludingthethalamus.However,thepathwaysbetween thehippocampusandlayersIIandVoftheDMN/DANseemtobethe dominantonesbasedonpriorinvasiveanimalliterature(Shepardand Grillner,2010;ThomsonandLamy,2007).

ThepresentstudysoughttoinvestigatetheHIPER/HERNETmodel using the functionalconnectivity between the hippocampus and (1) deeperlayersofDAN/DMNduringanencodingtask,and(2)superfi- ciallayers ofDAN/DMN duringaretrievaltask.Specifically,wehy- pothesizedthatduringamemoryencodingtask,clusteringhippocam- pal voxelsbasedontheirfunctionalconnectivitywithlayerVof the DANmustparcellatethehippocampus inananterior-posteriorgradi- entalongthelongaxis.Similarly,duringamemoryretrievaltask,clus- teringhippocampalvoxelsbasedontheirfunctionalconnectivitywith layerIIoftheDMNmustalsoshowananterior-posteriorsegmentation.

Second, duringanencodingtask,thehippocampalvoxelsmusthave strongerconnectivity withlayerV ofthe DANthanwith layerVof theDMN.Contrarily,duringaretrievaltask,thehippocampalvoxels musthave strongerconnectivity withlayerIIof theDMN thanwith layerIIoftheDAN.Third,consideringthedirectionalityofsignalpro- jection,duringanencodingtask,layerVoftheDANmustshowstronger correlationwithanteriorhippocampalregionsthanwithposteriorhip- pocampalregions,whereasduringretrievaltask,layerIIoftheDMN mustexhibitstrongercorrelationwithposteriorhippocampalregions thanwithanteriorhippocampalregions.Finally,wepredictedthatus- inglayer-specificdatawouldleadtomoredefinitiveresultsthanusing conventionalvolume-leveldatawhileinvestigatingtheconnectionbe- tweenthehippocampusandtheDAN/DMN.Allfourhypotheses,based onpredictionsfromtheHERNETmodel,areillustratedinFig.1.Here itisnoteworthythatalthoughweintendtotestthesehypothesesus- ingfMRI dataextracted from layersII andVof DAN/DMN regions, somepartialvolumeeffectsareexpectedforthespatialresolutionof ourdata.Therefore,signalfromlayerIIbroadlyrepresentsthosefrom supra-granularlayerswithdominantcontributionfromlayerII.Like- wise,signalfromlayerVbroadlyrepresentsthosefrominfra-granular layerswithdominantcontributionfromlayerV.

In order totest these hypotheses, fMRI data was acquired from healthy subjects performing memory encoding and retrieval tasks with faces, pictures of scenes and words in the 7T scanner. Ultra- high resolution anatomical data was also acquired to resolve lay- ersintheDAN/DMN.Unsupervisedclusteringmethodswereapplied, which groupsobjectsin adatadrivenwaywithout using anylabels to guide theresults, to parcellatethe hippocampalvoxels based on theirconnectivitywithdifferentlayersintheDAN/DMN.Threeclus- tering methodswere specifically chosen, i.e.,hierarchical clustering (DasguptaandLong,2005),orderingpointstoidentifytheclustering structure(OPTICS)(Ankerstetal.,1999),anddensitypeakclustering (DPC)(RodriguezandLaio,2014),sincetheydidnotrequireapriori specificationofthenumberofclusters.Sinceclusteringaccuracyisoften lowerinhighdimensionalfeaturespace,ageneticalgorithm(GA)based featureselectionmethodwasalsoemployed,whichislesspronetolo- caloptimum(DyandBrodley,2004),comparingwithotherexistingfea- tureselectionmethods,e.g.,sequentialforwardsearching(DyandBrod- ley,2004),non-linearoptimization(BradleyandMangasarian,1998), etc.

2. Materialsandmethods

In this work theconnectivity between the hippocampus and the DAN/DMNwereinvestigatedbyclusteringhippocampalvoxels,inan unsupervised way, based on their connectivity with (1) layer V of DAN/DMNduringanencodingtask,and(2)layerIIofDAN/DMNdur-

(3)

Fig.1. Illustrationofourhypothesesbasedon predictionsfromtheHERNETmodelaswellas knownanatomicalpathwaybetweendifferent layersofDAN/DMNandhippocampus.

ingaretrievaltask.Theidentifiedfunctionalclustersofthehippocam- puswerethencomparedwithananatomicalanterior-posteriorsegmen- tation(Poppenketal.,2013).Theentireanalysispipelineisillustrated inFig.2andwillbeelaboratedbelow.

2.1. Dataacquisition

Thirty-onehealthyindividuals(26right-handed,12 males,19fe- males,age =21.1± 1.4)were recruitedforthestudy. TheInternal ReviewBoard(IRB)atAuburnUniversityapprovedthestudy,subjects providedinformedconsentandtheexperimentalprocedureswereper- formedinaccordancewithinternationallyacceptedethicalstandards.

Echo-planarimaging(EPI)datawereacquiredontheAuburnUniver- sityMRIResearchCenter(AUMRIRC)Siemens7TMAGNETOMscanner outfittedwitha32-channelheadcoilbyNovaMedical(Wilmington, MA).Thesequencewasoptimizedforthehippocampus(37slicesac- quiredparalleltotheAC-PCline,0.85mm×0.85mm×1.4mmvoxels, TR/TE:3000/28 ms,70° flip angle,base/phaseresolution: 234/100, A→Pphaseencodedirection,iPATGRAPPAaccelerationfactor=3,in- terleavedacquisition,123 timepoints,total acquisitiontime6min).

Duringencodingtask,theparticipantswereaskedtoviewaseriesof faces,picturesofscenesandwords.Eachtriallastedfor30sinwhich thesubjectswere presented10 imagesof thesame category for3s each.Thesetrialswereinterspersedwitha6sinter-trialinterval.The paradigmfortheretrievaltaskwasidenticaltotheencodingtaskwith theexceptionthatthesubjectswereprovidedwithanMR-compatible buttonboxtoindicate,viabuttonpresses,whethertheyrecognizedthe imageashavingseenduringtheencodingtaskornot.Awhole-brain high-resolution3DMPRAGEsequencewasusedtoacquireanatomical data(256slices,0.63mmx0.63mmx0.60mm,TR/TE:2200/2.8,7°

flipangle,base/phaseresolution384/100%,collectedinanascending fashion,acquisitiontime=14:06)forextractingdifferentcorticallayers intheDAN/DMNROIsandforregistrationpurposes.

2.2. Preprocessing

(a) Hippocampaldata:Standardpre-processingstepswerecarriedoutus- ingSPM8(Ashburner,2012)includingbrainextraction,slicetiming correction,motioncorrection,regressionofmotionandphysiologi- calartifacts(usingCompCor(Behzadietal.,2007)),registrationto anatomicalspace,andnormalizationtoMNIstandardspace.

TheHarvard-OxfordStructuralProbabilityAtlasdistributedwiththe FSLneuroimaginganalysissoftwarepackage(http://www.fmrib.ox.

ac.uk/fsl/fslview/atlas-descriptions.html#ho) was used to define hippocampalROIs.Ourtaskdidnotexplicitlyinvolvespatialmem- orytypicallyusedinnavigation,whichisprimarilyassociatedwith therighthippocampus (Burgess etal.,2002).Therefore,only the lefthippocampus wasconsideredin thisstudy.Inorder todeter- mine a conservative anatomicalrepresentation, the hippocampal ROI was thresholded at 75%.The meanprobability forthe vox- elsinthehippocampalROIsbelongingtothehippocampus(M±SD:

86.41%± 7.10%)andthevoxelcentroid(MNIcoordinates[−26,

−18.8, −17.2]) belonging to the hippocampus was > 86% and 97.1%,respectively.TheidentifiedhippocampalROIsareillustrated inFig.3withatotalvolumeof1880mm3.

(b) Corticallayer-specificdataoftheDAN/DMN:Dataextractedfromthe wholebrainwasfirstpreprocessedusingSPM8.Topreservehigh spatialresolution,nospatialfilteringwasapplied.Thecorticallay- erswerethenreconstructedusingFreeSurfer(Fischl,2012).Specifi- cally,twointerfaces,i.e.,thecorticalgraymatterandtheunderlying whitematter(white-grayinterface)andtheinterfacebetweenthe corticalgraymatterandthepialsurface(gray-pialinterface),were automaticallyreconstructedfromtheanatomicalimage.Then,the corticalthicknesswascalculatedastheaverageofthedistancefrom thewhite-grayinterfacetotheclosestpossiblepointonthegray-pial interface,thenfromthatpointbacktotheclosestpointonthewhite- grayinterfaceagain.Toimproveaccuracy,surfacesmoothingand

(4)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Fig.2. Illustrationofproposedanalysispipelineforinvestigatinghippocampalparcellationbasedonitslayer-specificconnectivitywithDAN/DMNROIs.Thesame processwasrepeatedforencodingandretrievaltasks,separately,aswellaswithconventionalvolumedata(asopposedtolayer-specificdata).

(5)

Fig.3.Hippocampal ROIusedinthisstudy.

Onlythelefthippocampuswasconsideredin thisstudy.

automatictopologycorrectionwerealsoapplied(Daleetal.,1999; Fischletal.,1999;FischlandDale,2000;Hanetal.,2006).Fromthe corticalthicknessmap,sixcorticallayerswerethenreconstructed withinthecorticalgraymatteratfixedrelativedistancebetweenthe whiteandpialsurfacesdeterminedfromthecorticalthickness,i.e., thefirstlayerwaslocatedat96%ofthecorticalthicknessawayfrom thewhitematter,thesecondlayerat80%,thethirdlayerat64%,the fourthlayerat48%,thefifthlayerat32%,andthesixlayerat16%

(Fig.4).Thelaminarlayerswerederivedfromtheanatomicalimage, soitwasnecessarytoaligntheEPIdatatotheselayers.Aboundary- basedregistrationmethod(GreveandFischl,2009)wasemployed, whichalignstheEPIimagetotheanatomicalimagebymaximizing theintensitygradientacrosswhite-grayinterfaceandgray-pialin- terface.Theentirecorticalsurfacewasautomaticallydividedinto 34corticalROIsineachoftheindividualhemispheresbasedonthe Desikan-KillanyatlasinFreesurfer(Desikanetal.,2006).Themajor DANregions,i.e.,frontaleyefield[FEF],inferiortemporalcortex [ITC],inferiorfrontalgyrus[IFG],andsuperiorparietallobe[SPL], andmajorDMNregions,i.e.,anteriorcingulatecortex[ACC],me- dialprefrontalcortex[mPFC],inferiorparietallobe[IPL],posterior cingulatecortex[PCC],andprecuneus,wereidentifiedfromthose 34ROIs,andvertices(voxelsinthevolumebecomeverticesonsur- faces)inlayerIIandlayerVoftheseregionswerethenidentified.

2.3. Connectivitymeasures

FCmeasuresthefunctionalinterrelationshipbetweenpairsofbrain regions byestimating Pearson’s correlationbetween time seriesrep- resentingthose brainregions.Functional connectivity (FC)was esti- matedbetweenthehippocampalvoxelsand(1)verticesinlayerVof theDAN/DMNduringtheencodingtask,and(2)verticesinlayerIIof theDAN/DMNduringtheretrievaltask.

2.4. Layerspecificclustering

The hippocampal voxels were parcellated using three clustering methodsbasedontheirFCwith(1)verticesinlayerVoftheDAN/DMN duringtheencodingtask,and(2)verticesinlayerIIoftheDAN/DMN during the retrieval task. The same process was repeated on DAN and DMN volume ROIs, separately. Let 𝑌 ={𝑌1,,𝑌𝑖,,𝑌𝑁} rep- resent aset of 𝑁 objects, i.e.,numberof hippocampal voxels. 𝒀𝑖= (𝑌𝑖1,𝑌𝑖2,,𝑌𝑖𝑑)∈ℝ𝑑,wheredequalstothenumberofFCfeatures.As- sumetheNobjectsareseparatedintokclusters.Eachclusterisaset ofindexesfrom{1,,𝑁},andeachobject𝑌𝑖belongstoexactlyone cluster.

(a)HierarchicalClustering(Agglomerative):Asoneofthemostcom- monlyusedconnectivity-basedclusteringmethod,thehierarchicalclus- tering(Liaoetal.,2008;Chengetal.,2006;DasguptaandLong,2005) groupsobjects into different clustersby building a hierarchicaltree structure.Theprocedureofthismethodisillustratedbelow:

(1) Initially,eachobject𝑌𝑖isassignedtoaclusterwithonlyitselfinit.

Fig.4. CorticallayerreconstructionwithFreeSurfer.Sixcorticallayerswere reconstructedwithinthecorticalgraymatteratfixedrelativedistancesbetween thewhiteandpialsurfaces.

(2) Distancebetween anytwoclustersismeasured.Then,theclosest pairofclustersaremerged.

(3) Step2–3arerepeateduntilall𝑌𝑖areinonebigcluster.

The resulting tree structure is usuallyreferred toas thedendro- gram (Fig.5).The rootof thedendrogram represents the entire data, eachleaf noderepresentsone singleobject, andtheheight of the dendrogram represents thedistance between each pair of clusters. Differentdata partitionscan be obtained by cutting the dendrogramatdifferentheights.Notethattherearethreelinkage criterions, single-linkage, complete linkage, and average-linkage, whichhavebeenwidelyusedinmeasuringdistancebetweentwo clusters.Thesinglelinkage(Andreopoulosetal.,2008)calculates theshortest distance between twoclusters, the complete linkage (Andreopoulosetal.,2008)calculatesthelongestdistance,andthe averagelinkage(Andreopoulosetal.,2008)calculatesthemeandis- tance.Thesinglelinkagemethodcanhandlenon-ellipticalshapeof clusters,butcanbeaffectedbynoiseandoutliers.Thecompletelink- agemethodislesssensitivetonoiseandoutliersbuttendstobreak largeclusters.Theaveragelinkageisacompromisebetweensingle- linkageandcompletelinkagemethods.Thus,theaveragelinkage methodwasemployedinthiswork.

(6)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Fig.5.Illustrationofhierarchicalclustering.(a)Originalsimulateddataset,(b)Dendrogramderivedfromhierarchicalclustering,and(c)Clusteringresultsobtained withaspecificcuttingheight.Twoclustersthatwereidentifiedaremarkedwithdifferentcolors.

(b) Ordering Points to Identify the Clustering Structure: OPTICS (Ankerstetal., 1999)is oneof themostpopulardensity-basedclus- teringmethods(Kriegeletal.,2011)Givenadistancethreshold(𝜀)and theminimumnumberofobjectsrequiredtoformacluster(𝑀𝑖𝑛𝑃𝑡𝑠), objectsinhigh-densityareasaregroupedtogether,whereasobjectsin sparseareas,whicharerequiredtoseparateclusters,areusuallyconsid- eredtobenoiseoroutliers.OPTICScandiscoverclusterswitharbitrary shapesandhastheabilitytoidentifyoutlierobjectsthatdonotbelong toanyoftheclusters.

InOPTICS,twovariablesarecomputedforeachobjectinthedataset:

core-distance and reachability-distance. Let 𝑁𝜀(𝑌𝑖) represent the num- berofnearbyobjectswithin𝜀(called𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑),and𝑀𝑖𝑛𝑃𝑡𝑠𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑌𝑖)representthedistancefrom𝑌𝑖toits𝑀𝑖𝑛𝑃𝑡𝑠’neighbor.An object𝑌𝑖isacoreobjectifatleast𝑀𝑖𝑛𝑃𝑡𝑠objectsarefoundwithits

𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑.Thecore-distanceof𝑌𝑖isdefinedas:

𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃 𝑡𝑠( 𝑌𝑖)

=

{𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑖𝑓 𝑁𝜀( 𝑌𝑖)

<𝑀𝑖𝑛𝑃𝑡𝑠 𝑀𝑖𝑛𝑃𝑡𝑠𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(

𝑌𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

which is the smallest distance for 𝑌𝑖to have 𝑀𝑖𝑛𝑃𝑡𝑠 in its 𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑.

Thereachability-distanceofobject𝑌𝑗withrespecttoobject𝑌𝑖isde- finedas:

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑑𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃 𝑡𝑠( 𝑌𝑗, 𝑌𝑖)

={ 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑖𝑓𝑁𝜀( 𝑌𝑖)

<𝑀𝑖𝑛𝑃𝑡𝑠 𝑚𝑎𝑥(

𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒( 𝑌𝑖)

,𝑑𝑖𝑠𝑡( 𝑌𝑗,𝑌𝑖))

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

Where𝑑𝑖𝑠𝑡(𝑌𝑗,𝑌𝑖)isthedistancemeasure(e.g.,Euclideandistance)be- tween𝑌𝑗and𝑌𝑖.ThecompleteprocedureofOPTICSisdescribedbelow:

(7)

Fig.6.IllustrationofOPTICSclustering.(a)Originalsimulateddataset,(b)reachabilityplotobtainedfromOPTICS,and(c)clusteringresults.Twoclusterswere identifiedcorrespondingtovalleysinthereachabilityplot.

(1) Chooseoneobject𝑌𝑖arbitrarily.

(2) Retrieve the 𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝑌𝑖, determine the core-distance of 𝑌𝑖, and set the reachability-distance of each object 𝑌𝑗in the 𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑of𝑌𝑖toundefined.

(3) If𝑌𝑖isnotacoreobject,gotostep5.Otherwise,gotostep4.

(4) For each object 𝑌𝑗 in the 𝜀𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝑌𝑖, update its reachability-distancefrom𝑌𝑖andinsert𝑌𝑗 intoanOrderSeedslist ifithasnotbeenprocessedyet.

(5) Iftheinput datasetis fully consumed andtheOrderSeeds list is empty,gotostep6.Otherwise,moveontothenextobjectinthe OrderSeedslist(ortheinputlist,iftheOrderSeedslistisempty)and gotostep2.

(6) Outputcore-distance,reachability-distanceofeachobject,andpro- cessedorder.

Thedataobjectsareplotted intheprocessedorder togetherwith theirrespectivereachability-distance(calledreachabilityplot)depicting thehierarchicalstructureoftheclusters.Sinceobjectsbelongingtoa clusterhavealowreachability-distancetotheirnearestneighbor,the clustersshowupasvalleysinthereachabilityplot(seeFig.6).Thefinal

datapartitioncanbeobtainedbyusingathresholdonthereachability plot.

(C)DensityPeakClustering:recentlyRodriguezandLaio(2014)pro- posed anovel density-based clustering method (referredtoas DPC) basedontheideathattheclustercentersarecharacterizedbyahigher densitythantheirneighborsandbyarelativelylargedistancefromob- jectswithhigherdensities.Likeotherdensity-basedclusteringmethods, e.g.,OPTICS,ithasabilitytodetectarbitrarilyshapedclustersandspot outlierobjects.Moreover,DPCoutperformscommonlyusedclustering methods, e.g.,k-meansandhierarchicalclustering, whenthedataset containscomplicatedfeaturessuchasnarrowbridgesbetweenclusters, uneven-sizedclusters,clusterswithhighoverlap,etc.

Foreachobject𝒀𝒊,twoquantitiesarecomputed:localdensity𝝆(𝒀𝒊) andminimumdistancewithhigherdensity𝜹(𝒀𝒊).𝝆(𝒀𝒊)isdefinedas:

𝝆( 𝒀𝒊)

= ∑

𝒊 𝝌( 𝒅𝒊𝒔𝒕(

𝒀𝒊, 𝒀𝒋)

𝒅𝒄)

(3)

where𝒅𝒄isacutoff distance,and𝝌(𝒚)canbecomputedby, 𝝌(𝒚)=

{1𝒊𝒇𝒚<0

0𝒐𝒕𝒉𝒆𝑟𝒘𝒊𝒔𝒆 (4)

(8)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Fig.7. IllustrationofDPCclustering.(a)Originalsimulateddataset,(b)Plotof𝛿asafunctionof𝜌foreachobject.Objectswithlarger𝜌and𝛿areclustercenters andobjectswithsmaller𝜌,andlarger𝛿areoutliers.(c)Clusteringresults.Twoclusterswereidentifiedcorrespondingtotwoclustercentersinthedecisiongraph.

FromEqs.(3)to(4),itcanbeseenthat𝝆(𝒀𝒊)equalstothenumber ofobjectswithin𝒅𝒄withrespecttoobject𝒀𝒊.𝜹(𝒀𝒊)ismeasuredby, 𝜹(

𝒀𝒊)

= min

𝒊𝝆( 𝒀𝒋)

>𝝆(𝒀𝒊)𝒅𝒊𝒔𝒕( 𝒀𝒊,𝒀𝒋)

(5)

Fortheobjectwithhighestdensity,𝜹(𝒀𝒊)isconventionallysetto, 𝜹(

𝒀𝒊)

=max

𝒊 𝒅𝒊𝒔𝒕( 𝒀𝒊,𝒀𝒋)

(6) Notethatif𝒀𝒊islocalorglobalmaximainthedensity,𝜹(𝒀𝒊)willbe muchlargerthanitstypicalnearestneighbor.Thus,objectswithlarger 𝝆and𝜹areconsideredasclustercenters,whereasobjectswithsmaller 𝝆andlarger𝜹areconsideredasoutliers.Otherobjectsareassignedto thesameclusterastheirnearestneighborofhigherdensity(seeFig.7).

(d)InputParameterOptimization: Ineach clusteringmethod,there areseveraluser-specifiedinputparameters,whichcansignificantlyaf- fect theshapeof thecluster andthenumberof thecluster (Fig.8).

Forhierarchicalmethod,thecuttingheightofthedendrogramneeds tobespecifiedandthenumberofclustersvarieswithdifferentcutting heights.ForOPTICS,𝜺cansimplybesettothemaximumpossiblevalue, andAnkerstetal.(1999)showedthatfor𝑴𝒊𝒏𝑷𝒕𝒔usingvaluesbetween 10and20wouldalwaysleadtogoodresults.However,thethresholdfor thereachabilityplot,whichisusedtoextractclusters,stillneedstobe properlydetermined.ForDPC,𝒅𝒄canbechosenbasedontherulethat theaveragenumberofneighborsisaround1–2%ofthetotalnumber ofobjectsinthedataset(RodriguezandLaio,2014).Athresholdfor 𝝆and𝜹needstobedefinedtodistinguishclustercenters,borders,and outliers.Inthisstudy,theaveragesilhouetteindex(Rousseeuw,1987) wasemployedtodeterminetheoptimalvaluesoftheseparameters.As- sumethedatahavebeenclusteredviaanyclusteringalgorithm,suchas OPTICS,intoKclusters.Foreachobject𝒀𝒊,let𝒂(𝒀𝒊)representtheav- eragedistanceof𝒀𝒊withallotherobjectinthesamecluster,and𝒃(𝒀𝒊) representthesmallestaveragedistanceof𝒀𝒊 toanyothercluster,of

(9)

Fig.8.Illustrationofdependencyofclusteringresultsoninputparameters.Takehierarchicalclusteringasanexample.Witharelativelyhighcuttingheight(a), twoclusters(redandblue)wereidentified(b).Ascuttingheightwasreduced(c),onebigcluster(red)wasseparatedintotwosmallerclusters(d).

which𝒀𝒊doesnotbelongto.Thenthesilhouetteindexof𝒀𝒊isdefined as:

𝒔( 𝑿𝒊)

= 𝒃( 𝒀𝒊)

𝒂( 𝒀𝒊) 𝐦𝐚𝐱{

𝒂( 𝒀𝒊)

, 𝒃(

𝒀𝒊)} (7)

FromEq.(7),itcanbeseenthat𝒔(𝒀𝒊)isboundedbetween−1and 1.If𝒀𝒊 hasbeenassignedtoa“correct” cluster,𝒔(𝒀𝒊)willbecloseto 1.Contrarily,if𝒀𝒊hasbeenassignedtoa“wrong” cluster,𝒔(𝒀𝒊)willbe closeto−1.𝒔(𝒀𝒊)willbecloseto0,if𝒀𝒊islocatedontheborderoftwo naturalclusters.Bycomputingtheaverage𝒔(𝒀𝒊)overallobjectsinthe entiredataset,theaccuracyoftheclusteringresultscanbequantified.

Withtheaveragesilhouetteindexastheoptimizationcriterion,a

“gridsearch” (BergstraandBengio,2012)methodwasappliedonde- terminingtheoptimalvalueofeachparameter.Theoptimalnumberof clusterscanbedeterminedsimultaneously.Forexample,inOPTICS,we startedwitharelativelyhighthresholdforthereachability-plot.Ineach iteration,thethresholdwasreducedbyasmallamountandtheaver- age𝒔(𝒀𝒊)wascomputedandrecordedbasedonthecurrentpartition.

Theiterationcontinuesuntilthethresholdwassmallerthanaspecified baseline,e.g.,theaveragereachability-distanceofthereachability-plot.

Theoptimalthresholdwasthendeterminedastheonewiththelargest average𝒔(𝒀𝒊).Thesameiterativeprocedurewasappliedtohierarchical clusteringtodetermineoptimalcuttingheightofdendrogram,andto DPCtodeterminetheoptimalthresholdof𝝆and𝜹.

2.5. Featureselectionandclusteridentification

Theclusteringaccuracyisoftenlowerinhighdimensionalfeature space,which maybebecausemostoffeaturesinthedatasetmaybe irrelevant,redundant,orsometimesmayevenmisguideresults.More- over,alargenumberoffeaturesmaketheclusteringresultsdifficultto interpret.Therefore,afeatureselectionmethodisrequiredtoimprove theclusteringaccuracy.Forsupervisedlearning,featureselectioncan betrivial,i.e.,onlythefeaturesthatarerelatedtothegivenclusterla- belsaremaintained.Nevertheless,forunsupervisedlearning,thecluster labelsareunknown.Thus,findingtherelevantsubsetoffeaturesand clusteringthesubsetofthedatamustbeaccomplishedsimultaneously.

Assumingdtobetheinitialnumberoffeatures,anexhaustivesearch of2𝒅possiblesubsetsneedtobeexamined,whichiscomputationallyex- pensive.Therefore,inthisstudyanalternativeGAbasedmethodwas appliedtodeterminetheoptimalsubsetoffeatures,aswellastheop- timalclusteringresults.Theaveragesilhouetteindexwasusedasthe optimizationcriteria.

Asoneofthemostpopularsearchheuristicmethods,GAhasbeen widelyusedingeneratingsolutionstooptimizationandsearchingprob- lems(YangandHonavar,1997;ShahamatandPouyan,2015).Different fromsingle-statemethods(onlyonesolutionisevaluatedatatime),e.g., simulatedannealing,hillclimbing,etc.,GAisa“population” method thatmaintainsasetofsolutionsevolvingtowardanoptimalsolution.

Theevolutionusuallystartsfromapopulationofrandomlygenerated

(10)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Fig.9.FlowchartofGAforfeatureselection.In the𝑴-by-𝒅 matrix,eachrow representsacan- didatesolution, describinga subsetofselected features.Eachofthe𝒅bitsinarowrepresents whetherafeatureisselected(1)ordiscarded(0).

solutions.Ineachiteration(orsocalled“generation”),“survivorsolu- tions” withlargervaluesofoptimizationcriteria,i.e.,theaveragesil- houetteindex,areselectedtoformanewgenerationofsolutions.These survivalsolutionscanbegeneratedfromthecrossover,whichproduced newsolutionsbyrandomlycombiningtwocurrentsolutions,mutations, whichrandomlychangesnewsolutionswithasmallprobability,orfrom theinitialpopulation.Thenewgenerationofsolutionsisthenusedin thenextiterationofthealgorithm.Conventionally,thealgorithmter- minateswhenthebestsolutioncannotbeimprovedanyfurther.

Inthisstudy,anarrayof𝒅bitswasusedtorepresenttheselected subsetoffeaturesandthepopulationsizeisrepresentedusing𝑴.Each bitinthearrayindicatestheactivationstatusofonespecificfeature:1 indicatesselectedand0indicateddiscarded.Thecompleteprocedureof GAisdescribedbelow(Fig.9):

(1) Initialization:400candidatesolutionsweregeneratedbyrandomly setting1or0foreachbitinvectors.

(2) Crossover:twocandidatesolutionsAandBwererandomlyselected fromthecurrentpopulation.Avaluevbetween1and𝒅wasran- domlyselected.Thenanewsolutionwasformedbycombiningthe featurebits1tovfromAandfeaturebitsv+1to𝒅fromB.

(3) Mutation:foreachnewgeneratedsolution,amutationwasapplied byreversingbitsinthevectorwithaprobabilityof0.1.

(4) Evaluation:theclusteringmethodwasappliedoneachcandidateso- lution(i.e.,asubsetofselectedfeatures),andtheaveragesilhouette indexwascomputedforeachobtainedpartition.

(5) Selection:280solutionsresultinginhighaveragesilhouetteindex wereselectedalongwith120solutionsrandomlyselectedfromthe restofthesolution(toincreasethediversityofthepopulation).

(6) Iftheresultdidconverge,i.e.,theaveragesilhouetteindexofthebest solutioninthepopulationkeepincreases,weiteratedbacktostep2.

Otherwise,theclusteringresultwiththelargestaveragesilhouette indexandthecorrespondingselectedsubsetoffeaturesweresaved astheoutput.

(11)

Fig.10. Anatomicalanterior-posteriorsegmentation usedinthisstudy.(CoordinatesareinMNIspace).

2.6. Volumelevelclustering

In order to determine whether characterizing layer-specific mi- crocircuits using ultra-highfieldfMRIprovides any advantagesover conventionally computed voxel-level connectivity, the same cluster- ingprocedureenumeratedabovewasalsoperformedontheFCcom- puted between hippocampal and DAN/DMN voxels during encod- ing/retrieval tasks. Specifically, let 𝒀 ={𝒀1,,𝒀𝒊,,𝒀𝑵} repre- sent a set of 𝑵 objects, i.e., number of hippocampal voxels. 𝒀𝑖= (𝑌𝑖1,𝑌𝑖2,,𝑌𝑖𝑑)∈ℝ𝑑,where𝒅equalstothenumberofFCfeaturescom- putedbetweenhippocampalvoxelsandvoxelsintheDAN/DMN,re- spectively.Subsequently,thesameclusteringandfeatureselectionpro- cesswasrepeatedonencodingandretrievaltasks,DANandDMNROIs, separately.

2.7. Comparisonwithanatomicalanterior-posteriorsegmentation

In this study, clusters were identified based on the DAN/DMN- hippocampalFCduringencoding/retrievaltasks,respectively.Thispro- videdafunctionalparcellationof thehippocampus,which wascom- paredwithanatomicallydelineatedanteriorandposteriorhippocampal segments.

Thehippocampuscanbe anatomicallyseparatedintohead,body, andtails,with theheadandbody beingconsideredasanterior,and thetailbeingconsideredastheposteriorpart.Variousmethods,such as landmark-based segmentation (Poppenk et al., 2013), percentile- basedaxissegmentation(Hackertetal.,2002;Greiciusetal.,2003),a Talairach/MNIcoordinate-basedsegmentation(Poppenketal.,2013), havebeenusedtodefinetheanteriorandposteriorregionsofthehip- pocampus.WeemployedtheTalairach/MNIcoordinate-basedsegmen- tation(Poppenketal.,2013)whichchosey=−21inMNIspace(y=−20 inTalairachspace)astheborderbetweenanteriorandposteriorseg- mentationsasshowninFig.10.Thiscoordinatecorrespondstotheun- calapex,whichisconsideredastheendoftheposteriorportionofthe hippocampus(Destrieuxetal.,2013).

Let𝑨={𝑨1, 𝑨2,,𝑨𝑴}representmanatomicalparcels,and𝑭= {𝑭1, 𝑭2,, 𝑭𝑴}denotenfunctionalparcelsidentifiedbyapplying clusteringmethodsonFCfeatures. Thesimilaritybetweenthese two parcellationswasthenquantifiedusingTorres’method(Torresetal., 2008).ThesimilaritymatrixforAandFisan𝒎 × 𝒏matrixdefinedas:

𝑺𝑨,𝑭=

⎡⎢

⎢⎢

⎢⎢

𝑺11

𝑺𝒊1

𝑺𝒎1

𝑺1𝒋

𝑺𝒊𝒋

𝑺𝒎𝒋

𝑺1𝒏

𝑺𝒊𝒏 𝑺𝒎𝒏

⎤⎥

⎥⎥

⎥⎥

(8)

where𝑺𝒊𝒋=𝒊𝒖,whichisJaccard’sSimilarityCoefficientwith𝒊being thesizeofintersectionand𝒖beingthesizeoftheunionofclustersets 𝑨𝒊and𝑭𝒋.Thesimilarityofparcellations𝑨and𝑭isthendefinedas:

𝑺𝒊𝒎(𝑨,𝑭)=

𝒊𝒎,𝒋𝒏𝑺𝒊𝒋

𝒎𝒂𝒙(𝒎, 𝒏) (9)

FromEqs.(8)to(9), itcanbeseenthat0≤𝑺𝒊𝒎(𝑨,𝑭) ≤1,and 𝑺𝒊𝒎(𝑨, 𝑭)=1whentwoparcellationsareidentical.

The entireanalysispipeline proposedfor investigating functional differentiation of the hippocampus and layer-specific microcircuitry between the hippocampus and the DAN and DMN during encod- ing/retrievaltasksareillustratedinFig.2.

3. Results

Theoptimalvaluesofeachinputparameterdeterminedforthethree clustering methodsarepresented Tables 1and2for layer-level and volume-levelclustering,respectively.Usingeachclusteringmethod,the hippocampalvoxelswereclusteredintotwodifferentfunctionalparcels basedontheirFCwith(1)layerVoftheDAN/DMNduringtheencod- ingtask,and(2)layerIIoftheDAN/DMNduringtheretrievaltask.This wastrueacrossmethods.Theobtainedclusterswerethenmappedback totheimagespaceandtheresultinghippocampalparcelswereoverlaid ontheanatomicalimageforthevisualization.

SimilarhippocampalparcellationswerediscoveredusingtheirFC withlayerVoftheDAN/DMNduringtheencodingtaskandlayerIIof theDAN/DMNduringtheretrievaltask,andtheaverageclustersimilar- itybetweenDPCandhierarchicalclustering,betweenDPCandOPTICS, andbetweenhierarchicalclusteringandOPTICS,were0.93,0.95,and 0.92,respectively.Forillustration,theclusteringresultsobtainedusing theDPCmethodareshowninFig.11.Theclusteringresultsobtained usinghierarchicalclusteringandOPTICSareshowninSupplementary InformationFigs.S.1andS.2.FromFig.11,itcanbeseenthatthehip- pocampus showedananterior-posterior gradientalongthelong-axis,

(12)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Table1

Estimatedoptimalvaluesofeachinputparameterinlayer-specificclustering.h:cutting height,ands:

reachabilitythreshold.

Method Name Parameter Left Hippocampus

DAN DMN

Encoding Layer V Retrieval Layer II Encoding Layer V Retrieval Layer II

DPC 𝝆 9.03 7.13 8.29 8.50

𝜹 3.15 2.82 3.14 3.04

Hierarchical h 1.16 1.15 1.15 1.15

OPTICS s 0.55 0.50 0.53 0.25

Fig.11. Clustersofhippocampalvoxelsdetermined(usingtheDPCmethod)basedontheirfunctionalconnectivitywith(1)layerVoftheDMN/DANduringthe encodingtask,and(2)layerIIoftheDMN/DANduringtheretrievaltask.(CoordinatesareinMNIspace).

Table2

Estimatedoptimalvaluesofeachinputparameterinvolume-levelclustering.h:

cuttingheight,ands:reachabilitythreshold.

Method

Name Parameter

Left Hippocampus

DAN DMN

Encoding Retrieval Encoding Retrieval

DPC 𝝆 7.59 6.38 5.61 7.93

𝜹 0.09 0.13 0.18 0.12

Hierarchical h 1.15 1.15 1.16 1.15

OPTICS s 0.39 0.06 0.002 0.03

whichisconsistentwiththeanatomicalanterior-posteriorsegmentation (Fig.10).

To quantitatively characterize the identified clusters, the cluster similaritybetweenourfunctionallyobtainedhippocampalparcelsand anatomicallydefinedanterior-posteriorparcels(Fig.10)wascomputed.

Themeancorrelationbetweenhippocampalvoxelsandselectedvertices (usingGA-basedfeatureselectionmethod)inlayerVoftheDAN/DMN (duringtheencodingtask)andthelayerIIoftheDAN/DMN(during theretrievaltask)wasalsocomputedwithinanteriorandposteriorhip- pocampalregions(Table3).

Forthelefthippocampus,duringtheencodingtask,theaverageclus- tersimilarity,overdifferentclusteringmethods,betweenfunctionaland anatomicalparcellationsforlayerVoftheDANandDMNwas0.70and 0.70,respectively.TheabsolutecorrelationobservedbetweenlayerV oftheDANandthehippocampuswassignificantlylargerthanthatbe- tweenlayerVoftheDMNandthehippocampusasthep-valuesshown in Table4, whichisinlinewithoursecondhypothesis.Aone-tailed 2-samplet-testwasconductedtotestwhetherthecorrelationoflayer VoftheDANwiththeanteriorhippocampalregionswassignificantly largerthanthatwiththeposteriorhippocampalregions.Thep-values obtainedfordifferentclusteringmethodswereallcloseto1,whichdid notprovideevidencetosupportourthirdhypothesisforDANpart.

Duringtheretrievaltask,theaverageclustersimilaritybetweenfunc- tionalandanatomicalparcellationsforlayerIIoftheDANandDMNwas 0.70and0.77,respectively.Theabsolutecorrelationobtainedbetween layerIIoftheDMNandthehippocampuswassignificantlylargerthan thatbetweenlayerIIoftheDANandthehippocampusasthep-values showninTable5,whichwasconsistentwithoursecondhypothesis.In addition,thecorrelationbetweenlayerIIoftheDMNandtheposterior hippocampalregionswassignificantlylargerthanthatwiththeanterior hippocampalregions(one-tailed2-samplet-test;p<0.001fordifferent clusteringmethods),consideringthesignofthecorrelation.Thisresult wasinlinewithourthirdhypothesisforDMNpart.

(13)

Table3

Clustersimilaritybetweenfunctionalandanatomicalanterior-posteriorparcellationsusingdifferentclusteringmethodsandmeancorrelationobtainedwithineach clusterontheleftsideofthehippocampus.

Clustering Method

Feature Type

Task Name

DAN DMN

Correlation

Sim.

Correlation

Sim.

Anterior Posterior Anterior Posterior

DPC Layer-

specific

Encoding Layer V) 0.36 0.36 0.70 0.13 0.16 0.70

Retrieval (Layer II) 0.09 0.06 0.73 0.39 0.31 0.77

Volume- level

Encoding 0.20 0.04 0.69 0.02 0.12 0.69

Retrieval 0.30 0.33 0.74 0.01 0.02 0.74

Hier. Layer- specific

Encoding Layer V) 0.36 0.35 0.70 0.13 0.16 0.70

Retrieval (Layer II) 0.14 0.11 0.63 0.41 0.34 0.77

Volume-

level Encoding 0.48 0.17 0.68 0.51 0.18 0.69

Retrieval 0.08 0.05 0.72 0.01 0.02 0.74

OPTICS Layer- specific

Encoding Layer V) 0.35 0.34 0.70 0.09 0.10 0.70

Retrieval (Layer II) 0.14 0.07 0.73 0.36 0.27 0.77

Volume- level

Encoding 0.51 0.18 0.69 0.02 0.03 0.71

Retrieval 0.33 0.41 0.57 0.21 0.09 0.74

Table4

ComparisonoftheabsolutecorrelationsobtainedbetweentheDANwiththehippocampusandtheDMNwiththehippocampusduringtheencodingtaskby conductingone-tailedtwo-samplet-test(𝑯0:correlationofDANandthehippocampus≤correlationoftheDMNandthehippocampus).

Feature Type

Clustering Method

Left Hippocampus Mean Absolute Correlation

P-value

DAN DMN

Anterior Posterior Anterior Posterior Anterior Posterior

Layer- specific (Layer V)

DPC 0.39 0.39 0.34 0.35 < 0.001 0.005

Hierarchical 0.38 0.39 0.34 0.35 0.004 0.009

OPTICS 0.37 0.38 0.34 0.35 0.002 0.007

Volume-

level DPC 0.51 0.18 0.51 0.18 0.500 0.500

Hierarchical 0.48 0.17 0.51 0.18 0.750 0.564

OPTICS 0.51 0.18 0.45 0.19 0.170 0.507

Table5

ComparisonoftheabsolutecorrelationsobtainedbetweentheDMNwiththehippocampusandtheDANwiththehippocampusduringtheretrievaltaskby conductingone-tailedtwo-samplet-test(𝑯0:correlationoftheDMNwiththehippocampus≤correlationoftheDANandthehippocampus).

Feature Type

Clustering Method

Left Hippocampus Mean Absolute Correlation

P-value

DAN DMN

Anterior Posterior Anterior Posterior Anterior Posterior

Layer- specific (Layer II)

DPC 0.37 0.37 0.51 0.41 < 0.001 0.002

Hierarchical 0.34 0.38 0.51 0.41 < 0.001 0.023

OPTICS 0.45 0.28 0.50 0.40 0.015 < 0.001

Volume- level

DPC 0.32 0.30 0.35 0.24 0.298 0.932

Hierarchical 0.23 0.27 0.31 0.28 0.053 0.444

OPTICS 0.33 0.41 0.32 0.26 0.540 0.973

Forvolumelevelanalysis,i.e.clusteringofhippocampalvoxelsbased ontheirFCwithvoxelsinDAN/DMNvolume(asopposedtolayerIIand layerVoftheDAN/DMNasbefore),similarparcellationswerediscov- eredusingdifferentclusteringmethods,andtheaverageclustersimilar- itybetweenDPCandhierarchicalclustering,betweenDPCandOPTICS, andbetweenhierarchicalclusteringandOPTICS,were0.96,0.88,and 0.87,respectively.Forillustration,theclusteringresultsusingDPCare showninFig.12,andtheclusteringresultsusinghierarchicalcluster- ingandOPTICSareshowninsupplementaryinformation(Figs.S.3and S.4).

AsshowninFig.12,ananterior-posteriorgradientwasobtainedas well.Theclustersimilaritybetweenfunctionalandanatomicalparcel- lations,andthemeancorrelationwithinanteriorandposteriorregions werealsocomputedforvolumelevelclustering.AsshowninTable3, theaverageclustersimilarityfortheDAN(duringtheencodingtask) andtheDMN(during theretrievaltask)were0.69and0.74,respec-

tively,whichwerequalitativelylessthanthevalueobtainedusingthe layer-specificdata.Duringtheencodingtask,thecorrelationbetween DANandthehippocampuswasnotsignificantlygreaterthanthecor- relationbetween DMNandthehippocampus(p>0.05)forallthree clustering methods(Table 4),whereas during theretrievaltask, the correlationbetweenDMNandthehippocampuswasnotsignificantly greaterthanthecorrelationbetweenDANandthehippocampusforall threemethods(Table5).Thisresultwasdifferentfromtheresultob- tainedusinglayer-specificdata.Itwasalsocontradictorytooursecond hypothesis.Thecorrelationsbetweenanteriorandposteriorhippocam- palregionswithDAN/DMNforencoding/retrievaltaskswerealsocom- paredusingone-tailed2-samplet-test.Duringtheencodingtask,thep- valuesobtainedforDPC,hierarchical,andOTPICSwere0.019,<0.001, and0.02,respectively,whereasduringtheretrievaltask,thep-values obtained forthesethree methodswere1,1, and0.436,respectively.

This result provided evidence for our third hypothesis for only the

(14)

G. Deshpande, X. Zhao and J. Robinson NeuroImage 254 (2022) 119078

Fig.12. Clustersofhippocampalvoxelsdetermined(usingtheDPCmethod)basedontheirfunctionalconnectivityDMN/DANvolumeduringencodingandretrieval tasks.(CoordinatesareinMNIspace).

DAN partconsidering thesign of the correlation, not for the DMN part.

4. Discussion

In this work, we investigated functional differentiation of the hippocampus and the connectivity between the hippocampus and DAN/DMNregionsduringencoding/retrievaltasks.Giventhepredic- tionsobtainedfromtheHIPER/HERNETmodelandknownanatomical pathwaysbetweenthesenetworksandthehippocampus,wetestedfour hypothesesasdescribedintheIntroductionsection.Inordertodoso, weinvestigatedtheconnectivitybetweenthehippocampusandlayerV oftheDANduringtheencodingtask,andbetweenthehippocampusand layerIIoftheDMNduringtheretrievaltask.Theproposedfirst,second andfourthhypotheseswereconfirmed,whereas thethirdhypothesis waspartiallyconfirmedforDMNpart(consideringsignofthecorrela- tion),notforDANpart.Thediscussionofresultsisorganizedasfollows.

First,wediscusstheresultsobtainedbythevalidationoftheanterior- posteriordifferentiationofthehippocampususingtheFCbetween(1) hippocampalvoxelsandlayerVoftheDANduringtheencodingtask, and(2)hippocampalvoxelsandlayerIIoftheDMNduringtheretrieval task.Second,wediscusstheconnectivitybetweenthehippocampusand theDAN/DMNduringencoding/retrievaltasks.Third,wediscussthe layer-specificfunctionalmicrocircuitsbetweenthelayerVoftheDAN andthehippocampusduringtheencodingtask,andbetweenthelayerII oftheDMNandthehippocampusduringtheretrievaltask.Fourth,we discusstheimportanceofultra-highfieldfunctionalneuroimaginginde- velopingaccurateandrobustmodelsoffunctionalconnectivity.Finally, wediscussthefunctionaldifferentiationofthehippocampusalongthe long-axis.

4.1. Anterior-Posteriorfunctionaldifferentiationofthehippocampus

Theideathattheanteriorandposteriorpartsofthehippocampus mayservedifferentfunctionsemergedhalfacenturyago(Nadel,1968).

More recently, Robinson et al.(2015) conducted meta-analyses and foundananterior-posteriorlong-axissegmentationonboththeleftand righthippocampi. Duarteetal. (2014) studiedfunctionalspecializa- tionofthehippocampususingfMRIandavirtualreality3Dparadigm.

Theyfoundafunctionaldichotomywherebytheanterior/posteriorhip- pocampus shows antagonistic processing patterns for spatial encod- ingandretrievalof3D spatialinformation. Princeetal.(2005) also provided evidence for an anterior-posterior parcellation that corre- spondedtoencoding/retrievalprocesses.Notjustinthehippocampus, butWangetal.(2016)showedthistobetrueinotherregionsoftheme- dialtemporallobe,suchastheperirhinalcortex(PRC)aswell.Specif- ically,theyshowedpreferentialfunctionalconnectionoftheanterior PRCwiththeDANandtheposteriorPRCwiththeDMN.

Inthisstudy,thefunctionalspecializationofthehippocampushas beeninvestigatedbyusingunsupervisedclusteringoffunctionalcon- nectivity betweenthehippocampus andlayerII/VoftheDAN/DMN duringencoding/retrievalprocesses,respectively.Ourresultsyieldeda consistentanterior-posteriorlong-axisparcellation,whichshowedhigh clustersimilarityacrossclusteringmethodsbasedoncompletelydiffer- entprinciples.Thisresultindicatesthatduringtheencoding/retrieval processes,thereisarobustanterior-posteriorfunctionaldifferentiation alongthelong-axisofthehippocampus.

4.2. Layer-specificconnectivitybetweentheDAN/DMNandhippocampus

TheanatomicalpathwaysbetweenthehippocampusandDAN/DMN havebeenstudiedusinginvasiveanimalmodelsbymanyresearchers (Sugar et al., 2011; Thomson and Bannister, 2003; Thomson and Lamy, 2007). During an encoding task, deeper infra-granular lay- ers (specifically, layer V) of the DAN project to the hippocampus, whereas the hippocampaloutput reaches primarily more superficial supra-granular layers (specifically,layer II) of theDMN. This layer- specificorganizationhasalsobeenreportedbymanyanatomicalstud- ies.However,ithasneverbeendirectlyinvestigatedusingconnectivity basednon-invasivemethodsinhumans.

(15)

This layer-specific pathway between the hippocampus and DAN/DMNisnotexclusivesincepathwayswhichoriginate/terminate inotherlayersofthecortexmayalsocontributetothehippocampal input or output. This is not surprising given the highly complex underlying microcircuitry and given that signals between any two brainregionscanrelayviamultiplestructuresincludingthethalamus.

However,thepathways between thehippocampus andlayers IIand V of the DMN/DAN seemto be thedominant ones based on prior invasiveanimalliterature(ShepardandGrillner,2010;Thomsonand Lamy,2007)andthereforewehavechosentotesttheminthisstudy.

We investigated the connectivity between the hippocampus and theDAN/DMN usingFC betweenlayerV ofthe DAN/DMNandthe hippocampus duringthe encoding task,andbetween layerII of the DAN/DMNandthehippocampusduringtheretrievaltask.Duringthe encodingtask,thecorrelationobservedbetweenlayerVoftheDANand thehippocampuswassignificantlylargerthanthatbetweenlayerVof theDMNandthehippocampus.Contrarily,duringtheretrievaltask,the correlationobtainedbetweenlayerIIoftheDMNandthehippocampus wassignificantlylargerthanthatbetweenlayerIIoftheDANandthe hippocampus.Together,thesefindingsprovideevidencethattheoutput fromlayerVoftheDANlikelydrivesthehippocampusduringencoding, whereasduringretrieval,theoutputfromthehippocampusislikelyre- layedasinputstolayerIIoftheDMN.GiventhatPearson’scorrelation isadirectionlessquantity,ourinferenceofdirectionalityisindirectat best,basedonknowndirectionalityoftheunderlyinganatomicalpro- jections.

4.3. Layer-specificfunctionalpathwaybetweentheDAN/DMNand hippocampus

Considering the directionality of signal projectionduring encod- ing/retrievalprocessesandtheHERNETmodel,theinformationflow betweendifferentlayersoftheDAN/DMNanddifferentregionsofthe hippocampusshouldfollowthepattern:layerVoftheDAN→anterior hippocampus→posteriorhippocampus→layerIIoftheDMN.Thus, wehypothesizedthatduringanencodingtask,layerVoftheDANmush showstrongercorrelationwithanteriorhippocampalregionsthanwith posteriorhippocampalregions,whereasduringretrievaltask,layerIIof theDMNmustexhibitstrongercorrelationwithposteriorhippocampal regionsthanwithanteriorhippocampalregions.Ourresultsprovidepar- tialsupportforthishypothesis,i.e.,onlytheDMNpartwasconfirmed duringretrievaltaskconsideringthesignofthecorrelation(negativein anterior,positiveinposterior),butnotforDANpartduringencoding task.However,ifweonlyconsiderthemagnitudeofthecorrelationig- noringitssign,thethirdhypothesiswasnottrueforboththeDANand DMNpart.

4.4. High-resolutionfunctionalimaging:layervsvolumedata

Recent advances in ultra-high field fMRI have provided a non- invasivewayofinvestigatingcorticalcolumns.Thistechniqueprovides severaladvantagesoverconventionalfieldstrengths,e.g.,improvedspa- tialresolution,increasedsignaltonoiseratio,etc.Moreimportantly, thistechniquemakesitfeasibletoexaminelayer-specificbrainactiva- tionacrossdifferentbrainareas.Severalrecentstudieshaveshowedthat investigatingchangesinfMRIactivationasafunctionoflaminardepth canleadtomorepreciseresults(Olmanetal.,2012;Koketal.,2016).In thisstudy,weinvestigatedfunctionaldifferentiationofthehippocam- pusalongthelong-axisusingunsupervisedclusteringoflayer-specific functionalconnectivitybetweenthehippocampusandtheDAN/DMN regions. The same clustering processwas also applied on the func- tionalconnectivitybetweenthehippocampusandtheDAN/DMNvol- ume.Asweexpected,thelayer-specificdataledtomoredefinitivere- sults,i.e.,theproposed first,second andforth hypotheseswerecon- firmed,whereasthethirdhypothesiswaspartiallyconfirmedforDMN part(consideringsignofthecorrelation),notforDANpart.However,

usingvolume-leveldata,onlythefirsthypothesiswasconfirmedandthe thirdhypothesis(onlyforDANpartwithsignofthecorrelationbeing considered)waspartiallyconfirmed.Therefore,itisimportanttonote therelevanceofhigh-resolutionfunctionalneuroimaging asthefield progressestowarddevelopingmoreaccurateandrobustnetworkmod- elsofbrainfunctioningeneralandhippocampalfunctioninspecific.

4.5. Long-axisdifferentiationofthehippocampus

Recent evidencehassuggested that there isan anterior-posterior functionaldifferentiation ofthehippocampus alongthelong-axis. In Lepage’sHIPERmodel(Lepageetal.,1998)andmorerecentlyKim’s HERNET mode(Kim,2015),theanterior andposterior hippocampus are posited to be more associated with encoding and retrieval pro- cesses,respectively.Thisencoding/retrievaldichotomyfacedconflict- ingevidencefromsomemeta-analysesandstudies.SchacterandWagner (1999)revieweddatafromdiversefMRIstudiesandobservedthatboth theanteriorandposteriorhippocampalregions wereassociatedwith theencodingactivation.KumaranandMaguire(2006),Poppenketal.

(2008),andZweynertetal.(2011)foundthatmostencodingstudies usednovelstimuli,whichwereassociatedwiththeanteriorhippocam- pus.Ontheother hand,Poppenketal., 2010a2010b) observedthat familiarstimuliwereassociatedwiththeposteriorhippocampus and superiorsourcememory.Together,thesestudiessuggestthattheen- coding/retrievaldifferentiationcannotrelyonfindingsthatlinkthean- terior/posteriorhippocampustonovel/familiarstimuli.

Althoughtheencoding/retrievaldichotomyis predominantinhu- mans, many alternative specializations have also been proposed. A motivational processing model has been proposed with the ante- rior hippocampus being mainly engaged in “hot” processing (emo- tion/motivation), whereas the posterior hippocampus being mainly associated with “cold” processing (cognition) (Murty et al., 2011).

Robinson etal.(2015)(2016). alsofoundsupportfor thishypothesis basedonhippocampalparcellationsobtainedfrommeta-analyses,rest- ingstatefMRIconnectivityanddiffusiontensorimaging().However, Wolosinetal.(2012)foundthattheposteriorhippocampusalsocon- tributedtonegativeemotionalmemory.Someotherstudieshavepro- posedthattheposteriorhippocampusisespeciallyimportantforspa- tialprocessing,whereastheanteriorhippocampusmaybeimportantfor episodicmemoryorotherfunctions(Ryanetal.,2010;Hirshhornetal., 2012).Thismodelwasundercutbyevidencethattheanteriorhippocam- pusalsoplaysaspatialrole(WoollettandMaguire,2012).

In this study, our results provided partial support for HIPER/HERNET model. The strength of evidence in favor of the HERNET model was superior with layer-specific data compared to conventionalvolumedata.Aconsistentanteriortoposteriorlong-axis segmentationwasfoundduringencoding/retrievaltasks.Wealsofound that duringanencodingtask,thehippocampus wasmore correlated with the layer V of the DAN, whereas during a retrieval task, the hippocampuswasmoreassociatedwithlayerIIoftheDMN.However, wedidnotfindsupportforstrongercorrelationoflayerVoftheDAN andthe anteriorportionsduring theencoding task.Our resultsalso did not support theprediction of stronger correlation of layerII of theDMNandtheposteriorhippocampalsegmentsduringtheretrieval task (ignoring the sign of the correlation). Together, these results suggest that the underlying neurophysiology of the hippocampus and its interactionwith theneocortex under variousneurocognitive contextsisfarmorecomplexthanrelativelysimplisticmodelscurrently available.Ourstudydemonstratesthatitwilltakebetterqualitydata intermsofspatial-temporalresolutioninordertobuildbettermodels ofhippocampalfunctionandspecialization.

4.6. Limitations

Thepresentstudyhasafewlimitationsthatmaybeaddressedin futureresearch.First,inthisstudy,thecorticallayersweredelineated

References

Related documents

Percentage of countries with DRR integrated in climate change adaptation frameworks, mechanisms and processes Disaster risk reduction is an integral objective of

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

Dijkstra’s algorithm to compute the shortest path through a graph.. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall,

To estimate the welfare losses from restrictions on air travel due to Covid-19, as well as those losses associated with long run efforts to minimise the

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

3 Collective bargaining is defined in the ILO’s Collective Bargaining Convention, 1981 (No. 154), as “all negotiations which take place between an employer, a group of employers

Women and Trade: The Role of Trade in Promoting Gender Equality is a joint report by the World Bank and the World Trade Organization (WTO). Maria Liungman and Nadia Rocha 

Harmonization of requirements of national legislation on international road transport, including requirements for vehicles and road infrastructure ..... Promoting the implementation