• No results found

Evolution of cratons through the ages: A time-dependent study

N/A
N/A
Protected

Academic year: 2023

Share "Evolution of cratons through the ages: A time-dependent study"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Supplementary Materials: Evolution of cratons through

1

the ages: A time-dependent study

2

Jyotirmoy Paul*, Attreyee Ghosh

3

Centre for Earth Sciences, Indian Institute of Science, Bangalore, India

4

*jyotirmoyp@iisc.ac.in

5

(2)

Fig. S 1: Final stage of cratonic evolution from different models at 240 km. Viscosity combinations of cratons and asthenosphere is marked for each figure.

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 log10 visc

240 km 8 Ma 0.01,10 0.01,10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−2 −1 0 1

log10 visc

240 km 8 Ma 0.01,100 0.01,100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−2 −1 0 1 2

log10 visc

240 km 5 Ma 0.01,1000 0.01,1000

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−1 0 1 2

log10 visc

240 km 5 Ma 0.1,10 0.1, 10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−1 0 1 2

log10 visc

240 km 5 Ma 0.1,100 0.1,1000 0.1, 100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

−1 0 1 2 3

log10 visc

240 km 5 Ma 0.1,1000

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

0 1 2 3

log10 visc

8 Ma 1,10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

0 1 2 3

log10 visc

240 km 8 Ma 1,100 1, 100 1 , 100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

0 1 2 3 4

log10 visc

240 km 0 Ma

1,1000

1, 1000

(3)

Fig. S 2: Final stage of cratonic evolution from different models at 24 km. Viscosity combinations of cratons and asthenosphere is marked for each figure.

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0

log10 visc

24 km 8 Ma 24 km

0.01,10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0 3.5 4.0

log10 visc

24 km 8 Ma 0.01,100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0 3.5 4.0

log10 visc

24 km 5 Ma 0.01,1000

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0

log10 visc

24 km 5 Ma 0.01,10 0.1,10 0.1 , 10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0 3.5 4.0

log10 visc

24 km 5 Ma 0.1,100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0 3.5 4.0

log10 visc

24 km 5 Ma 0.1,1000

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0

log10 visc

24 km 8 Ma 1,10 1, 10 1 , 10

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

1.5 2.0 2.5 3.0 3.5 4.0

log10 visc

24 km 8 Ma 1,100

−180˚ −150˚ −120˚ −90˚ −60˚ −30˚ 0˚ 30˚ 60˚ 90˚ 120˚ 150˚ 180˚

−90˚

−60˚

−30˚

30˚

60˚

90˚

(4)

Table S 1: List of viscosity parameters used in the models.

6 7

Normalized Asth. visc.

Actual asth. visc.

(Pa-s)

Craton visc. multi- ple

Craton visc. within 0-100 km (Pa-s)

Craton visc. within 100-300 km (Pa-s)

Final defor- mation at 240 km (%)

Final defor- mation at 24 km (%)

0.01 10 19 10 3 × 10 23 10 20 -91 55

0.01 10 19 100 3 × 10 24 10 21 -48 33

0.01 10 19 1000 3 × 10 25 10 22 -37 10

0.1 10 20 10 3 × 10 23 10 21 -60 34

0.1 10 20 100 3 × 10 24 10 22 -19 7

0.1 10 20 1000 3 × 10 25 10 23 -31 -6

1 10 21 10 3 × 10 23 10 22 -12 7

1 10 21 100 3 × 10 24 10 23 -10 0.2

1 10 21 1000 3 × 10 25 10 24 -8 -9

8

(5)

V1: Animation of cratonic evolution at 240 km depth. Asthenosphere viscosity is 10 19 Pa-s,

9

cratons are 10 times stronger than surroundings (0.01, 10)

10

V2: Animation of cratonic evolution at 240 km depth. Asthenosphere viscosity is 10 19 Pa-s,

11

cratons are 100 times stronger than surroundings (0.01, 100)

12

V3: Animation of cratonic evolution at 240 km depth. Asthenosphere viscosity is 10 20 Pa-s,

13

cratons are 100 times stronger than surroundings (0.1, 100)

14

V4: Animation of cratonic evolution at 240 km depth. Asthenosphere viscosity is 10 21 Pa-s,

15

cratons are 100 times stronger than surroundings (1, 100)

16

References

Related documents

TN: It is good to be having this dialogue today about the 8-year-old experim ent in ' integrating' science education and all that h as b een initia ted at liSe a nd

Raman Centre for Atomic, Molecular and Optical Sciences Indian Association for the Cultivation of Science.

Adhikari S, Department of Physical Chemistry, Indian Association for the Cultivation of Science Jadavpur Kolkata 700032, India pcsa@iacs.res.in. Arunan E, Department of Inorganic

Geochemical and Nd isotopic compositions of siliciclastic sedimentary rocks from the CVV sub-basin are reported in order to understand the provenance of the Vindhyan sediments in

Founding Chair, Centre for Contemporary Studies (2004- 2018) &DST Year of Science Chair Professor, Centre for Ecological Sciences Indian Institute of

With the aim to understand the magnitude of the arsenic-pollution problem in the shallow-aquifer domain of Holocene meandering-river geomorphology, the potential total arsenic

3 Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.. †Division of Chemistry and Chemical Engineering, California Institute

Initial strontium isotopic compositions (estimated at t Ma) versus various geochemical parameters for meta-carbonate rocks from continental collision zones in the East