• No results found

Development of a frame work for Indian green building rating system

N/A
N/A
Protected

Academic year: 2022

Share "Development of a frame work for Indian green building rating system"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM

GAYATRI SACHIN VYAS

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI

OCTOBER 2017

(2)

© Indian Institute of Technology Delhi (IITD), New Delhi, 2017

(3)

DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM

by

GAYATRI SACHIN VYAS

Department of Civil Engineering

Submitted

In fulfillment of the requirements of the degree of Doctor of philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

OCTOBER 2017

(4)

Dedicated to my beloved Parents, Husband &

Teachers

(5)

i

CERTIFICATE

This is to certify that the thesis entitled, “Development of a Framework for Indian Green Building Rating System” being submitted by Mrs. Gayatri Sachin Vyas to the Indian Institute of Technology Delhi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by her under my supervision and guidance.

The thesis work, in my opinion, has reached the requisite standard fulfilling the requirement for the degree of Doctor of Philosophy.

The results contained in this thesis have not been submitted, in part or full, to any other University or Institute for the award of any degree or diploma.

Dr. K. N. Jha

(Associate Professor)

Department of Civil Engineering Indian Institute of Technology Delhi New Delhi- 110 016

(6)

ii

ACKNOWLEDGEMENTS

Firstly I would like to thank Almighty God for guiding and helping me to complete my thesis setting in excellence to the best of my potential.

I express my deep sense of gratitude towards my supervisor Dr. K. N. Jha for providing inspiration and motivation for the present work at every stage with invaluable suggestions. This thesis would not have been possible without his help, support and patience.

He has been what I can only describe as the ideal supervisor. No amount of appreciation can be good enough to express my gratitude and how indebted I am to him.

Besides my supervisor, I would like to thank members of student research committee, Prof. J. T. Shahu, Prof. B. Bhattacharjee, and Prof. V. K. Vijay for their advice and guidance during the course of my Ph.D.

I also express my thanks to Prof. M. B. Kumthekar, Mr. Suresh Pakhare, Mr. Gautam Oza, Mr. Vinay Kulthe and many others for their cooperation in collecting data and providing useful information for my research.

I have a galaxy of friends who have been the source of my unwavering strength during the course of this work. Some of the names amongst those are: Dr. Dilip Patel, Mrs.

Prachi Sohoni, Mr. K. K. Tripathi, Mr. Satish Kumar, Miss. Abhilasha Panwar. I am indebted to them and many more around me for the stimulating environment in the campus.

I would like to acknowledge the Indian Institute of Technology Delhi for offering me the admission to enable me to undertake the present research. I am especially thankful to all staff of Civil Engineering Department, and Kailash hostel for their kind support, help and guidance whenever I needed.

I am also thankful to College of Engineering Pune (COEP), for giving me an opportunity to pursue studies at IIT Delhi. My thanks are extended to my all colleagues and

(7)

iii

friends. Special thanks are due to Prof. A. D. Sahasrabudhe, Prof. B. B. Ahuja, Prof. S. S.

Bhosale, and Prof. S. R. Sathe for advising and inspiring me to join Ph.D., in IIT Delhi. I am grateful to Dr. R. S. Dalvi, Dr. V. B. Dawari, Dr. B. M. Dawari, Dr. M. S. Ranadive, Prof. R.

P. Thanedar and Mrs. Y. T. Lomte-Patil for their cooperation and support. My friends Meera, Soumya, Kanchan also supported me. This thesis would not have been possible without wishes and support from all of my relatives and friends.

This thesis is dedicated to my parents, and I cannot thank them enough for all they have done for me. My younger sister Shivani, younger brother Laxmikant, and his wife Durga have given me their unequivocal support and love during my stay at IIT Delhi, for which my mere expression of thanks does not suffice. Lastly and most importantly, I wish to extend thanks to my husband Sachin, for his personal support and encouragement for the studies. It was his constant encouragement and understanding that allowed me to write this thesis. Smiling faces of my sons, Omkar and Ishan and my nephew Vedant always inspire me to work hard and excel in everything I do.

Gayatri Sachin Vyas

(8)

iv

ABSTRACT

The construction industry is responsible for some of the most severe forms of local and global pollution, whose effects include climate change. So, it faces pressure to mitigate such negative impacts through increasing the sustainability of building practices, as reflected in the development of green building (GB) rating systems. Existing rating methods can be applied to different regions by addressing additional aspects such as varied climatic conditions and regional variations. This study proposes a rating system for the Indian context. To achieve this aim and promote GB construction, the study set five objectives: (1) to identify and evaluate various attributes for measuring the greenness of a building, (2) to develop a GB rating framework consisting of components, attributes and parameters to evaluate the green building index (GBI) and thereby rate a building for its greenness, (3) to identify the cost of a GB, (4) to benchmark GB attributes, and (5) to evaluate GB attributes by the environmental, social, and economic pillars of sustainability. For the sake of convenience, these objectives are achieved in five phases based on various research methods, including principal component analysis (PCA), analytical hierarchy process (AHP), fuzzy measures, fuzzy integrals, data envelopment analysis (DEA), and entropy.

The PCA has extracted nine components and 34 attributes. These are used for developing a framework for measuring the greenness of building in developing countries such as India. The nine components are: (1) site selection, (2) environment, (3) building resources and reuse, (4) building services and management, (5) innovative construction techniques, (6) environmental health and safety, (7) mechanical systems, (8) indoor air quality, and (9) economy. The GB rating system developed consists of the GBI at the top level, nine components at the middle level, and 34 attributes at the bottom level. To measure the attributes, 68 parameters were determined. The rating system was converted into a user-

(9)

v

friendly JAVA based software, which makes it easy to implement.

To promote the GB, it is vital to focus on those attributes which cost less while contributing more towards reducing the negative impact of construction on the environment.

The outcomes of this study showed that investing in green building is economically profitable as it saves the emission of carbon dioxide (CO2). The financial analysis of GB projects demonstrated that the percentage increase in the cost for a five stars green rating for integrated habitat assessment (GRIHA) rated buildings varied from 6.43% to 16.35% with an average of 8.50%. In the case of three star rated buildings, the percentage increase in the cost varied from 1.63 to 3.63% with an average of 2.85%. From the study, it was observed that the average payback period for GBs rated three stars was 2.53 years and for GBs rated five stars it was 5.5 years. The average discounted period for a five stars GB was 5.23 years and for a three stars GB, 7.56 years. The increase in cost per square meter for a five stars GB varied from Rs.827.56 to Rs. 2280.51 and the average increase was Rs.1,375.91. The increase in cost per square meter for three stars GBs was from Rs.512.25 to Rs.1250.09 and the average increase was Rs.800.16.

The DEA benchmarked those GB attributes which can give more green points using limited funds. These include operation and maintenance costs, material recycling, low-impact construction site techniques, locally available materials, soil pollution, light pollution, plantation of adaptive plants, integrated project management–building information modelling (BIM), environmental impact of materials, and a noise pollution efficient frontier.

However, if the users do not want to focus on the cost parameter alone, they may also consider the environmental and the social pillars of sustainability. In that case, the most substantial attributes are the occupant’s health, safety, and comfort, climatic conditions, the cost of investment, operation and maintenance, and indoor air quality.

So the study contributes to theory and practice in the form of models and methods to

(10)

vi

(1) assess the GB in India by JAVA based software; (2) find out the increase in initial cost, payback period, and life cycle cost of a GB; (3) identify the GB attributes through which a GB developer can achieve more green points with less cost; and (4) identify prominent attributes by considering social, environmental, and economic pillars of sustainability.

The proposed approach can produce significant benefits for GB construction practices that are not likely to result from conventional practices. Further, the framework suggested in this research can be applied for countries having similar climatic conditions. The findings of this study can aid designers and developers in their quest to achieve green development.

Keywords: Green Building; Rating System; Sustainable Development; Principal Component Analysis; Analytical Hierarchy Process; Fuzzy Integral; Data Envelopment Analysis; Initial Cost; Payback Period.

(11)

vii

सार

िनमाण उ ोग, थानीय और वैि क दूषण के कुछ सबसे गंभीर पों के िलए िज ेदार है, िजनके

भाव म जलवायु प रवतन शािमल है इसिलए, यह ीन िब ंग (जीबी) रेिटंग िस म के िवकास म प रलि त िकए गए िनमाण िविधयों की थरता म वृ के मा म से इस तरह के नकारा क भावों

को कम करने के िलए दबाव का सामना करना पड़ता है। िविभ मौसम संबंधी थितयों और े ीय

िविवधताओं जैसे अित र पहलुओं को संबोिधत करके मौजूदा रेिटंग िविधयों को अलग-अलग े ों म लागू िकया जा सकता है। इस अ यन म भारतीय संदभ के िलए एक रेिटंग णाली का ाव है। इस उ े को हािसल करने के िलए और जीबी िनमाण को बढ़ावा देने के िलए, अ यन म पांच उ े ों

की थापना की गई: (१) एक इमारत की ीननेस की पहचान और मू ांकन करने के िलए िविभ कारकों की पहचान, (२) मू ांकन के िलए घटकों, िवशेषताओं और मापदंडों से यु जीबी रेिटंग ढांचे

का िवकास ीन िब ंग इंडे (जीबीआई) और इसकी ीननेस के िलए एक इमारत की दर, (३) जीबी की लागत, (४) बचमाक जीबी कारक, और (५) पयावरण, सामािजक, और आिथक, तीन थरता

के ख ों ारा जीबी कारकों का मू ांकन. इन उ े ों को पांच चरणों म हािसल िकया जाता है,

िजसम मुख घटक िव ेषण (पीसीए), िव ेषणा क पदानु म ि या (एएचपी), फजी उपाय, फजी एकीकृत, डेटा भंग िव ेषण (डीईए) और ए ापी सिहत िविभ शोध िविधयों पर आधा रत है।

पीसीए ने ९ घटकों और ३४ िवशेषताओं को िनकाला है। इनका उपयोग भारत जैसे

िवकासशील देशों म िनमाण की ीननेस को मापने के िलए एक ढांचा िवकिसत करने के िलए िकया

जाता है। नौ घटक ह: (१) थान चयन, (२) पयावरण, (३) िनमाण संसाधन और पुन: उपयोग, (४) िनमाण सेवाओं और बंधन, (५) अिभनव िनमाण तकनीक, (६) पयावरण ा और सुर ा, (७) मैकेिनकल

िस म, (८) इनडोर हवा की गुणव ा, और (९) अथ व था िवकिसत जीबी रेिटंग णाली म शीष र पर जीबीआई, म र पर नौ घटक होते ह, और नीचे के र पर ३४ िवशेषताएँ होती ह। गुणों को

(12)

viii

मापने के िलए, ६८ पैरामीटर िनधा रत िकए गए थे। रेिटंग णाली को उपयोगकता के अनुकूल जावेवा

आधा रत सॉ टवेयर म बदल िदया गया था, िजससे इसे लागू करना आसान हो जाता है।

जीबी को बढ़ावा देने के िलए, उन िवशेषताओं पर ान कि त करना मह पूण है, जो खच कम और पयावरण पर िनमाण के नकारा क भाव को कम करने के िलए अिधक योगदान करते ह।

इस अ यन के प रणामों से पता चला है िक हरी इमारत म िनवेश करना आिथक प से लाभदायक है ोंिक यह काबन डाइऑ ाइड (सीओ २) का उ जन बचाता है। जीबी प रयोजनाओं का िव ीय

िव ेषण दशाता है िक एकीकृत आवास मू ांकन (जीआरआईएचए) के पांच िसतारों के हरे रंग की

रेिटंग के िलए लागत म ितशत वृ दर ८.५३% से औसत ६.४३% से बढ़कर १६.३५% हो गई है।

तीन िसतारा ेणी िनधारण वाली इमारतों के मामले म, लागत म ितशत वृ १.६3 से ३.६३% से

बढ़कर औसत २. ८५% हो गई है। अ यन से, यह देखा गया िक तीन िसतारों को रेट िकए गए जीबी

के िलए औसत लौटाने का समय २.५३ साल था और पांच साल के िलए जीबी का मू ांकन ५.५ साल था। पांच िसतारे जीबी की औसत रयायती अविध ५.२३ साल थी और तीन िसतारों के िलए जीबी, ७.५६ साल थी। पांच िसतारे जीबी के िलए लागत ित वग मीटर म वृ ₹ ८२७.५६ से ₹ २२८0.५१ और औसत वृ ₹ १, ३७५.९१ थी । तीन िसतारों के िलए ित वग मीटर की लागत म वृ पये से थी। ₹ ५१२.२५ से ₹ १२५0.0९ और औसत वृ ₹८00. १६ थी।

डीईए ने उन जीबी गुणों को बचमाक िकया जो िक सीिमत िनिधयों का उपयोग करके

अिधक हरे रंग का अंक दे सकते ह। इसम संचालन और रखरखाव लागत, साम ी रीसाइ ंग, कम भाव वाली िनमाण साइट तकनीक, थानीय प से उपल साम ी, िम ी दूषण, काश दूषण, अनुकूली पौधों के पौधरोपण, एकीकृत प रयोजना बंधन-िनमाण सूचना मॉडिलंग (बीआईएम), साम ी का पयावरणीय भाव और एक शोर दूषण कुशल सीमा हालांिक, अगर उपयोगकता अकेले लागत पैरामीटर पर ान कि त नहीं करना चाहते ह, तो वे पयावरण और थायी थरता के सामािजक खंभे

(13)

ix

पर भी िवचार कर सकते ह। उस मामले म, सबसे मह पूण गुणों म रहने वाले के ा , सुर ा, और आराम, जलवायु प र थितयां, िनवेश की लागत, संचालन और रखरखाव, और इनडोर हवा की गुणव ा है।

अतः यह अ यन िस ांत और वहार के िलए मॉडलों और तरीकों के प म योगदान देता

है (१) जावा के सॉ वेयर ारा भारत म जीबी का मू ांकन; (२) ारंिभक लागत म बढ़ोतरी, लौटाने

की अविध, और जीबी के जीवन च की लागत का पता लगाएं; (३) जीबी एिट ूट्स की पहचान कर

िजसके मा म से एक जीबी डेवलपर कम लागत के साथ अिधक हरे रंग की अंक ा कर सकता है;

और (४) थरता के सामािजक, पयावरण और आिथक खंभे पर िवचार करके मुख िवशेषताओं की

पहचान कर।

ािवत ि कोण जीबी िनमाण थाओं के िलए मह पूण लाभ उ कर सकते ह जो

पारंप रक थाओं से होने की संभावना नहीं है। इसके अलावा, इस शोध म सुझाए गए ढांचे के समान जलवायु प र थितयों वाले देशों के िलए लागू िकया जा सकता है। इस अ यन के िन ष अिभक कार और िवकासक को हरे रंग के िवकास को हािसल करने के िलए अपनी खोज म मदद कर सकते ह।

कुंजी श : ीन िब ंग; रेिटंग णाली; सतत िवकास; मुख कंपोनट िव ेषण; िव ेषणा क पदानु म ि या; फजी इंटी ल; आकड़ा लपेटना िव ेषण; आरंिभक लागत; ऋण वापसी की

अविध।

(14)

x

CONTENTS

CERTIFICATE ... i

ACKNOWLEDGEMENTS ... ii

ABSTRACT ... iv

सार…… ... vii

CONTENTS ... x

LIST OF FIGURE ... xiv

LIST OF TABLE ... xvi

LIST OF ABBREVIATION ... xvii

1 CHAPTER 1 INTRODUCTION ... 1

1.0 Research Background ... 1

1.1 Research Aim and Objectives... 5

1.2 Rationale for the Research ... 7

1.3 Research Questions ... 10

1.4 The Scope of the Research ... 11

1.5 Organisation of the Thesis ... 12

1.6 Summary ... 13

2 CHAPTER 2 LITERATURE REVIEW ... 14

2.0 Introduction ... 14

2.1 Background of Environment Alteration ... 15

2.1.1 Population Growth ... 15

2.1.2 Climate Change ... 16

2.1.3 Building Sector ... 17

2.2 Sustainable Development (SD) ... 18

2.3 Well-Known Green Building Assessment Methods ... 20

2.3.1 BREEAM (UK- 1990) ... 21

2.3.2 SBTool (International-1995) ... 22

2.3.3 Green Globes ... 23

2.3.4 LEED (U.S.A.) ... 23

2.3.5 HK-BEAM ... 24

2.3.6 DGNB Rating System ... 25

2.3.7 Three-Star Building Rating System- China ... 26

2.4 Green Building Rating Systems in India ... 27

(15)

xi

2.4.1 LEED-2011 for India NC Rating System ... 27

2.4.2 GRIHA Rating System ... 28

2.4.3 Eco-Housing ... 29

2.5 Comparison of Different Green Building Rating Systems ... 33

2.6 Critique of the Well-Known GB Rating Systems ... 38

2.7 Research Gaps ... 44

2.8 Summary ... 46

3 CHAPTER 3 RESEARCH METHOD ... 47

3.0 Introduction ... 47

3.1 Research Method for Phase I ... 50

3.2 Research Method for Phase II ... 51

3.2.1 Fuzzy Measures ... 51

3.2.2 Fuzzy Integral ... 54

3.2.3 Analytical Hierarchy Process ... 56

3.2.4 Weighted Sum Method ... 58

3.3 Research Method for Phase III ... 59

3.4 Research Method for Phase IV ... 60

3.5 Research Method for Phase V ... 65

3.5.1 Entropy Method ... 65

3.6 Data Collection for the Study ... 66

3.6.1 Data Collection for Phase I ... 66

3.6.2 Data Collection for Phase II ... 67

3.6.3 Data Collection for Phases III, IV, and V ... 69

3.7 Selection of Respondents ... 71

3.8 Summary ... 73

4 CHAPTER 4 DEVELOPMENT OF GREEN BUILDING RATING FRAMEWORK FOR INDIA ... 77

4.0 Introduction ... 77

4.1 Framework of the Study ... 78

4.1.1 Identifying the GB Attributes ... 78

4.1.2 Univariate Analysis of Attributes ... 85

4.2 Analysing the Attributes by Principal Component Analysis... 92

4.2.1 Preliminary Tests of Response Data ... 92

4.2.2 Component Reduction ... 94

4.3 Discussion ... 95

(16)

xii

4.3.1 Component 1 - Site selection ... 95

4.3.2 Component 2 – Environment... 97

4.3.3 Component 3 - Building resources and reuse ... 97

4.3.4 Component 4 - Building services and management ... 98

4.3.5 Component 5 - Innovative construction techniques ... 100

4.3.6 Component 6 - Environmental health and safety ... 100

4.3.7 Component 7 - Mechanical systems ... 101

4.3.8 Component 8 - Indoor air quality ... 101

4.3.9 Component 9 – Economy ... 102

4.4 Summary and Conclusions ... 102

5 CHAPTER 5 DEVELOPMENT OF GREEN BUILDING INDEX ... 104

5.0 Introduction ... 104

5.1 Development of Green Building Index ... 105

5.2 Determination of Weights of Attributes ... 107

5.3 Determination of Weights of Components ... 110

5.4 Determination of GBI ... 112

5.5 Measurement of Attributes for Determining the GBI ... 115

5.6 Certification Criteria ... 127

5.7 Comparison of Newly Developed Rating System with Existing Indian Rating Systems ... 127

5.8 Summary and Conclusions ... 129

6 CHAPTER 6 COST IMPLICATIONS FOR A GREEN BUILDING ... 132

6.0 Introduction ... 132

6.1 Data Collection ... 134

6.2 Calculation of Initial Cost of a Green Building ... 138

6.3 Estimation of Energy Savings ... 140

6.4 The Payback Period ... 141

6.5 The Discounted Payback Period ... 142

6.6 Life Cycle Cost ... 143

6.7 Summary and Conclusions ... 145

7 CHAPTER 7 BENCHMARKING OF GREEN BUILDING ATTRIBUTES ... 147

7.0 Introduction ... 147

7.1 Data Collection and Data Analysis ... 147

7.2 The Cost Involved in Each Attribute ... 151

7.3 Maintenance Cost of Each Attribute ... 151

(17)

xiii

7.4 Change in Greenness Points ... 152

7.5 Results and Discussion ... 156

7.6 Summary and Conclusions ... 158

8 CHAPTER 8 PROMINENT GREEN BUILDING ATTRIBUTES FOR THE THREE PILLARS OF SUSTAINABILITY ... 161

8.0 Introduction ... 161

8.1 Environment and Social Pillar of Sustainability ... 163

8.1.1 Analysis of Environment and Social Pillar ... 164

8.2 Economy ... 166

8.2.1 Analysis of Economic Pillar ... 167

8.3 Discussion ... 168

8.4 Summary and Conclusion ... 172

9 CHAPTER 9 SUMMARY AND CONCLUSIONS ... 174

9.0 Background... 174

9.1 Summary of the Study ... 174

9.2 Conclusions of the Study ... 177

9.3 Recommendations ... 182

9.4 Limitations of the Study ... 183

9.5 Contributions to the Body of Knowledge ... 185

9.6 Suggestions for Further Studies ... 186

REFERENCES ... 187

APPENDIX I QUESTIONNAIRE FOR PRINCIPAL COMPONENT ANAYISIS ... 200

APPENDIX II QUESTIONNAIRE FOR DEVELOPING GREEN BUILDING INDEX ... 209

APPENDIX III AHP CALCULATION ... 217

APPENDIX IV JAVA BASED GBI SOFTWARE CODING ... 223

APPENDIX V INCREASE IN GREEN BUILDING COST- DATA FOR BUILDINGS C1 AND C2 ... 264

APPENDIX VI ENTROPY ANALYSIS FOR THE ATTRIBUTES ... 282

BIO-DATA OF THE AUTHOR ... 295

(18)

xiv

LIST OF FIGURE

Fig. 2.1. Assessment criteria and their weights in the BREEAM -2011 NC ... 22

Fig. 2.2. Assessment criteria and their weights in the SBTool ... 22

Fig. 2.3. Assessment criteria and their weights in Green Globes ... 23

Fig. 2.4. Assessment criteria and their weights in the LEED (U.S.A.) ... 24

Fig. 2.5. Assessment criteria and their weights in the HK – BEAM ... 25

Fig. 2.6. Assessment criteria and their weights in the DGNB... 26

Fig. 2.7. Assessment criteria and their weights in the three-star building rating system... 26

Fig. 2.8. Assessment criteria and their weights in the IGBC India ... 28

Fig. 2.9. Assessment criteria and their weighs in the GRIHA ... 29

Fig. 2.10. Assessment criteria and their weights in the Eco-housing rating system ... 30

Fig. 2.11. Assessment criteria and their weights adopted by various green building rating systems across the world ... 37

Fig. 3.1. Holistic framework of the research ... 49

Fig. 3.2. Inputs and output of green building attributes ... 63

Fig. 3.3. Distribution of respondents: by profession ... 72

Fig. 3.4 Distribution of respondents: by experience ... 73

Fig. 4.1. The steps for developing green building rating framework ... 78

Fig. 4.2. Framework of GB rating system ... 96

Fig. 5.1. The steps for developing GBI ... 108

Fig. 5.2. Flowchart for the development of JAVA based GBI ... 123

Fig 5.3. Site selection component ... 124

Fig. 5.4. Environment component ... 124

Fig. 5.5. Building resource and reuse component ... 125

(19)

xv

Fig. 5.6. Building service and management component ... 125

Fig. 5.7. Innovative construction, environmental health and safety, mechanical systems, indoor air quality and economy component ... 126

Fig. 5.8. A sample GBI output ... 126

Fig. 5.9. Certification criteria in the developed rating system ... 127

Fig. 5.10. Comparison of newly developed rating system with ... 129

Fig. 6.1. The steps for identifying cost implications of GB ... 134

Fig. 6.2. Cash flow diagram for calculating LCC for building C1. ... 144

Fig. 7.1. Research methodology ... 148

Fig. 8.1. Procedure for identifying environment, social, and economic analysis of attributes ... 163

(20)

xvi

LIST OF TABLE

Table 2.1 Green building rating systems used in the world ... 31

Table 2.2 Different attributes chosen in various rating systems ... 34

Table 2.3 GB research around the globe ... 43

Table 3.1 Saaty’s RI table ... 58

Table 3.2 Comparison of fuzzy and numerical scale ... 68

Table 3.3 Limitations of questionnaire survey and their remedial measures ... 69

Table 3.4 Limitations of case study method and their remedial measures ... 70

Table 4.1 Attributes considered in the questionnaire survey ... 81

Table 4.2 Results of univariate analysis carried out on 52 attributes ... 85

Table 4.3 Details of ANOVA result ... 88

Table 4.4 Attributes excluded based on KMO test- anti-image correlation matrix ... 93

Table 5.1 Linguistics values of Wij and Xij and their membership functions ... 108

Table 5.2 Combined matrix for the nine green building components ... 111

Table 5.3 Normalised matrix for the nine green building components ... 111

Table 5.4 Parameters for defining GB attributes ... 116

Table 6.1 Green building measures adopted in different cases ... 136

Table 6.2 Cost of green buildings ... 138

Table 6.3 Payback period analysis ... 142

Table 6.4 LCC for green buildings ... 144

Table 7.1 List of possible attributes for DEA. ... 149

Table 8.1 Global weights for attributes of green buildings: stakeholder's perspectives ... 165

Table 8.2 Ranking of attributes for environment, social, and economic pillars of sustainability ... 169

(21)

xvii

LIST OF ABBREVIATION

AAC Autoclaved Aerated Concrete

ABGR Australian Building Greenhouse Rating

AHP Analytical Hierarchy Process

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASTM American Society for Testing and Materials

BEE Bureau of Energy Efficiency

BIM Building Information Modelling

BIPV Building Integrated Photovoltaic

BMVBS Federal Ministry of Transport, Building and Urban A airs

BOMA Building Owners and Managers Association

BOQ Bill of Quantity

BRE Building Research Establishment

BREEAM Building Research Establishment’s Environmental Assessment Method

BRR Building Resource and Reuse

CASBEE Comprehensive Assessment System for Built Environment Efficiency

CB Commercial Building

CCR Charnes-Cooper- Rhodes

CFL Compact Fluorescent Light

CI Consistency Index

CPA Comprehensive Project Evaluation

CPCB Central Pollution Control Board

CPI Cost Performance Index

CPWD Central Public Works Department

CR Consistency Ratio

CRS Constant Returns to Scale

CURC Coal Utilization Research Council

DEA Data Envelopment Analysis

DGNB Deutsche Gesellschaftfür Nachhaltiges Bauen

DMU Decision Making Unit

DNGB German sustainable Building Council

DSR Delhi Schedule of Rates

EAM Environment Assessment Method

ECBC Energy Conservation Building Code

EG Extremely Good

EI Extremely Important

EMS Efficiency Measurement System

ENVIS Environmental Information System

EP Extremely Poor

EPI Energy Performance Index

ESRC Economic and Social Research Council

(22)

xviii

EUI Extremely Unimportant

FST Fuzzy Set Theory

GB Green Building

GBI Green Building Index

GDP Gross Domestic Product

GeSBC German Sustainable Building Certificate

GHEM Green Home Evaluation Manual

GRIHA Green Rating for Integrated Habitat Assessment

HK-BEAM The Hong Kong Building Environmental Assessment Method

HK-BEAM Hong Kong Building Environmental Assessment Method

HVAC Heating, Ventilation and Air Conditioning

IAQ Indoor Air Quality

IB Institutional Building

IEA International Energy Agency

IGBC Indian Green Building Council

IIEC International Institute for Energy Conservation

IPCC Intergovernmental Panel for Climate Change

IS Indian Standard

ISO International Organisation for Standardization

IUCNs International Union for Conservation of Nature and Natural Resources

KMO Kaiser-Meyer-Olkin

LC Life Cycle

LCC Life Cycle Cost

LCD Liquid Crystal Display

LEED Leadership in Energy and Environmental Design

LG Little Good

LI Little Important

LP Little Poor

LUI Little Un-Important

MATLAB Matrix Laboratory

MCDM Multiple Criteria Decision Making

MNRE Ministry of New and Renewable Energy

MoEF Ministry of Environment and Forests

MSA Measures of Sampling Adequacy

N Neutral

NAHB National Green Building Standard

NBC National Building Code

NCF Net Cash Flow

NPV Net Present Value

NR Non-Rated

O&M Operational and Maintenance

PC Principal Components

PCA Principal Component Analysis

PV Photovoltaic

(23)

xix

RTI Right to Information

SBTool Sustainable Building Tool

SBS Sick Building Syndrome

SD Sustainability development

SPSS Statistical Package for the Social Sciences

SRI Solar Reflective Index

STP Science and Technology Park

TERI The Energy and Resources Institute

UNFCCC United Nations Framework Convention on Climate Change

USGBC United States Green Building Council

VG Very Good

VI Very Important

VOC Voltaic Organic Compounds

VP Very Poor

VUI Very Un-Important

WCED World Commission on Environment and Development

WSM Weighted Sum Method

References

Related documents

The specific objectives of the study were: to identify the ethical frame works (logic) used by Indian managers and organizations for making decision in situations of ethical

Period On contract basis for one year likely to be renewed for the 2nd & 3rd year depending upon the satisfactory performance of duties.. NATIONAL INSTITUTE OF MENTAL HEALTH

Planned relocation is recognized as a possible response to rising climate risks in the Cancun Adaptation Framework under the United Nations Framework Convention for Climate Change

Businesses can play their part by decarbonising their operations and supply chains through continuously improving energy efficiency, reducing the carbon footprint of

17 / Equal to the task: financing water supply, sanitation and hygiene for a clean, the Ministry of Planning, Development and Special Initiatives is central to overall

I hereby certify that I have validated the tool of 301612564, M.SC(N)MEDICAL SURGICAL NURSING., II YEAR student Sresakthimayeil Institute of Nursing and Research,

3.6., which is a Smith Predictor based NCS (SPNCS). The plant model is considered in the minor feedback loop with a virtual time delay to compensate for networked induced

The last stage of language processing module involves phrase reordering. To match the structural divergence between the source and target language the rules are mapped into a