• No results found

Q 1. A 3 −

N/A
N/A
Protected

Academic year: 2022

Share "Q 1. A 3 − "

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

EXACT SOLUTION OF A LONG LINE:

IS

VS

V +dV

I +dI r.ds x.ds

g.ds c.ds

V

I Ir

Vr

l

ds s

The difference in voltages between he ends of the assumed section of length ds is dV. The difference is caused by the voltage drop in the series impedance of the section:

𝑑𝑉 = 𝐼. 𝑧𝑑𝑠 𝑑𝑉

𝑑𝑠 = 𝐼. 𝑧 … … … … . (𝑖)

The difference dI of the currents between the two ends of the section due to leakage current through the shunt admittance y.ds of the section is given by

𝑑𝐼 = 𝑉. 𝑦𝑑𝑠 𝑑𝐼

𝑑𝑠 = 𝑦. 𝑉 … … … (𝑖𝑖)

Equations (i)and (ii) are solved to find V and I as functions of s. Differentiation of eq(i) w.r.to s gives 𝑑2𝑉

𝑑𝑠2 = 𝑧.𝑑𝐼

𝑑𝑠 … … … . (𝑖𝑖𝑖) The value of 𝑑𝐼

𝑑𝑠 is substituted from eq.(ii) in eq.(iii) to give 𝑑2𝑉

𝑑𝑠2 = 𝑧𝑦 . 𝑉 … … … (𝑖𝑣) Now eq.(ii) is differentiated w.r.to s

𝑑2𝐼

𝑑𝑠2= 𝑧.𝑑𝑉

𝑑𝑠 … … … . . (𝑣) Substituting the value of 𝑑𝑉

𝑑𝑠 in eq.(v) from eq.(i) gives 𝑑2𝐼

𝑑𝑠2= 𝑧𝑦. 𝐼 … … … . . (𝑣𝑖)

Equations (iv) and (vi) are similar in form and therefore their general solutions will also be the same. Putting zy

= 𝛾2, we obtain

𝑑2𝑉

𝑑𝑠2 = 𝛾2. 𝑉 … … … (𝑣𝑖𝑖)

Equation (vii) is a linear differential equation of second order with constant coefficients. The general solution of this equation is of the form

𝑉 = 𝐶1 𝑒𝛾𝑠 + 𝐶2 𝑒−𝛾𝑠 … … … . . (𝑣𝑖𝑖𝑖)

(2)

Where 𝐶1 and 𝐶2 are arbitrary constants whose values depend upon the boundary conditions, i.e 𝐶1 and 𝐶2 are found from known values of V and I at some point of the line.

For finding the value of I, we differentiate eq.(vii) w.r. to s to get 𝑑𝑉

𝑑𝑠 = 𝐶1 𝛾 𝑒𝛾𝑠 − 𝐶2 𝛾 𝑒−𝛾𝑠 … … … … (𝑖𝑥) Putting the value of 𝑑𝑉

𝑑𝑠 from eq(i) in eq(viii), we get

𝑧. 𝐼 = 𝐶1 𝛾 𝑒𝛾𝑠 − 𝐶2 𝛾 𝑒−𝛾𝑠

𝑧. 𝐼 = 𝛾(𝐶1 𝑒𝛾𝑠 − 𝐶2 𝑒−𝛾𝑠 ) 𝑧. 𝐼 = √𝑧𝑦 (𝐶1 𝑒𝛾𝑠 − 𝐶2 𝑒−𝛾𝑠 )

𝐼 = √𝑧𝑦

𝑧 (𝐶1 𝑒𝛾𝑠 − 𝐶2 𝑒−𝛾𝑠 ) 𝐼 = √𝑦

𝑧 (𝐶1 𝑒𝛾𝑠 − 𝐶2 𝑒−𝛾𝑠 ) … … … . (x)

The values of V and I at the receiving end where s=0 are 𝑉𝑟 and 𝐼𝑟 respectively. Substituting these values in wqs(viii) and (x), we obtain

𝑉𝑟 = 𝐶1+ 𝐶2 … . (𝑥𝑖) 𝐼𝑟 = √𝑦

𝑧 (𝐶1+ 𝐶2) 1

√𝑦 𝑧

𝐼𝑟 = (𝐶1+ 𝐶2)

√𝑧

𝑦 . 𝐼𝑟 = (𝐶1− 𝐶2) Putting 𝑍𝑐 ≜ √𝑧𝑦 , we get

𝑍𝑐 . 𝐼𝑟 = (𝐶1− 𝐶2) … … … . . (𝑥𝑖𝑖) Where 𝑍𝑐 is called characteristic impedance.

After solving eqns. (xi) and (xii), we get, 𝐶1= 1

2 [𝑉𝑟 + 𝑍𝑐𝐼𝑟] and 𝐶2= 1

2 [𝑉𝑟− 𝑍𝑐𝐼𝑟]

Putting the values of 𝐶1 and 𝐶2 in eqns(viii) and (x), we get 𝑉 = 1

2 (𝑉𝑟+ 𝑍𝑐𝐼𝑟) 𝑒𝛾𝑠 +1

2 (𝑉𝑟− 𝑍𝑐𝐼𝑟) 𝑒−𝛾𝑠 𝑉 = 1

2 𝑉𝑟 𝑒𝛾𝑠 + 1

2 𝑍𝑐𝐼𝑟 𝑒𝛾𝑠 +1

2 𝑉𝑟 𝑒−𝛾𝑠 − 1

2 𝑍𝑐𝐼𝑟 𝑒−𝛾𝑠 𝑉 = 𝑉𝑟 (𝑒𝛾𝑠 + 𝑒−𝛾𝑠

2 ) + 𝑍𝑐𝐼𝑟 (𝑒𝛾𝑠 − 𝑒−𝛾𝑠 2 ) 𝑉 = 𝑉𝑟cosh 𝛾𝑠 + 𝑍𝑐𝐼𝑟 sinh 𝛾𝑠 … … … . . (𝑥𝑖𝑖𝑖) 𝐼 = √𝑦

𝑧 [1

2{𝑉𝑟 + 𝑍𝑐𝐼𝑟 }𝑒𝛾𝑠 −1

2{𝑉𝑟− 𝑍𝑐𝐼𝑟}𝑒−𝛾𝑠 ] Putting √𝑦

𝑧 = 1

𝑍𝑐 ,we get

(3)

𝐼 = 1 𝑍𝑐 [1

2{𝑉𝑟 + 𝑍𝑐𝐼𝑟 }𝑒𝛾𝑠 −1

2{𝑉𝑟− 𝑍𝑐𝐼𝑟}𝑒−𝛾𝑠 ] 𝐼 = 𝐼𝑟 (𝑒𝛾𝑠 + 𝑒−𝛾𝑠

2 ) + 𝑉𝑟

𝑍𝑐 (𝑒𝛾𝑠 − 𝑒−𝛾𝑠

2 )

𝐼 = 𝐼𝑟 cosh 𝛾𝑠 + 𝑉𝑟

𝑍𝑐 sinh 𝛾𝑠 … … … . . (𝑥𝑖𝑣)

The values of voltage and current at the sending can be found by substituting s=S in eqns.(xiii) and (xiv), we get 𝑉𝑠= 𝑉𝑟cosh 𝛾𝑙 + 𝑍𝑐𝐼𝑟 sinh 𝛾𝑙 … … … . . (𝑥𝑣)

𝐼𝑠 = 𝑉𝑟

𝑍𝑐 sinh 𝛾𝑙 + 𝐼𝑟 cosh 𝛾𝑙 … … … . (𝑥𝑣) Comparing with the standard equations, we obtain

𝐴 ≜ cosh 𝛾𝑙 𝐵 ≜ 𝑍𝑐 sinh 𝛾𝑙 𝐶 ≜ 1

𝑍𝑐 sinh 𝛾𝑙 𝐷 ≜ cosh 𝛾𝑙

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

: Numericals for practice

Q 1. A 3 − 𝑝ℎ𝑎𝑠𝑒, 50 𝐻𝑧 transmission line 300 km long has a total series impedance of (40 + 𝑗124)Ω and a total shunt admittance of 𝑗10

−3

𝑚ℎ𝑜. The receiving end load is 50 𝑀𝑊 𝑎𝑡 220 𝐾𝑉 𝑤𝑖𝑡ℎ 0.8 𝑙𝑎𝑔𝑔𝑖𝑛𝑔 power factor. Find the sending end voltage, current, power , power factor, efficiency and voltage regulation using exact transmission line equation.

Soln.:

𝑧. 𝑙 = 𝑍 = (40 + 𝑗 125) Ω = 131.2 ∠73.2𝑜 Ω 𝑦. 𝑙 = 𝑌 = 𝑗 10−3= 10−3∠90𝑜 𝑚ℎ𝑜

|𝐼𝑅𝑃| = 𝑃3−𝜙

√3 𝑉𝐿cos 𝜙= 50 × 106

√3 × 220 × 103× 0.8= 164 𝐴 𝐼𝑅𝑃= 164∠−36.86𝑜 A

𝑉𝑅𝑃=220×103

√3 = 127.017 × 103∠0𝑜 𝑣𝑜𝑙𝑡𝑠 𝑉𝑆𝑃 = 𝐴𝑉𝑅𝑃+ 𝐵𝐼𝑅𝑃 volts

𝐼𝑆𝑃 = 𝐶. 𝑉𝑅𝑃+ 𝐷. 𝐼𝑅𝑃 Amp.

𝐴 = D = cosh 𝛾𝑙

𝛾𝑙 = 𝛼𝑙 + 𝑗 𝛽𝑙 = √𝑍𝑌 = √131.2∠73.2 × 10−3∠90 = √131.2 × 10−3∠163.2 𝛾𝑙 = 0.362∠81.2 = 0.055 + 𝑗0.3577

𝛾𝑙 = (𝛼𝑙 + 𝑗 𝛽𝑙)

𝛼𝑙 = 0.055 𝑁𝑒𝑝𝑒𝑟, 𝛽𝑙 = 0.3577 𝑟𝑎𝑑. = 20.5 𝑑𝑒𝑔𝑟𝑒𝑒

cosh 𝛾𝑙 = cosh(𝛼𝑙 + 𝑗 𝛽𝑙) = cosh 𝛼𝑙 cos 𝛽𝑙 + 𝑗 sinh 𝛼𝑙 sin 𝛽𝑙 = cosh(0.055) cos(20.5) + 𝑗 sinh(0.055) sin(20.5) cosh 𝛾𝑙 = 1.0 × 0.9366 + 𝑗 0.055 × 0.35 = 0.9366 + 𝑗 0.01925 = 0.9367∠1.177𝑜

sinh 𝛾𝑙 = sinh(𝛼𝑙 + 𝑗 𝛽𝑙) = sinh 𝛼𝑙 cos 𝛽𝑙 + 𝑗 cosh 𝛼𝑙 sin 𝛽𝑙 = sinh(0.055) cos(20.5) + 𝑗 cosh(0.055) sin(20.5) sinh 𝛾𝑙 = 0.055 × 0.9366 + 𝑗 1.0 × 0.35 = 0.0515 + 𝑗 0.35 = 0.3537∠81.63𝑜

𝑍𝐶 = √𝑧.𝑙

𝑦.𝑙= √𝑍

𝑌= √131.2∠73.2

10−3∠90 = √131200∠ − 16.8 = 362.21∠ − 8.4 Ω 𝐴 = D = cosh 𝛾𝑙 = 0.9367∠1.177𝑜

𝐵 = 𝑍𝐶sinh 𝛾𝑙 = 362.21∠ − 8.4 × 0.3537∠81.63 = 128.2∠72.65

(24)

𝐶 = 1

𝑍𝐶 sinh 𝛾𝑙 = 1

362.21∠ − 8.4× 0.3537∠81.63 = 9.77 × 10−4∠90.4

𝑉𝑆𝑃 = 𝐴𝑉𝑅𝑃+ 𝐵𝐼𝑅𝑃= 0.9367∠1.177 × 127.017 × 103∠0 + 128.2∠72.65 × 164∠−36.86𝑜= 136.97∠6.2𝑜 𝐾𝑉 𝑉𝑆𝐿= √3 × 𝑉𝑆𝑃 = √3 × 136.97∠6.2𝑜 = 237.23∠6.2𝑜 𝐾𝑉

𝐼𝑆𝑃 = 𝐶. 𝑉𝑅𝑃+ 𝐷. 𝐼𝑅𝑃= 9.77 × 10−4∠90.4 × 127.017 × 103∠0𝑜+0.9367∠1.177𝑜× 164∠−36.86𝑜 = 128.6∠15.3 𝐴 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = cos 𝜙𝑆= cos(15.3 − 6.2) = cos 9.1 = 0.9874 leading

𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑑 𝑝𝑜𝑤𝑒𝑟, 𝑃𝑆= √3 × 𝑉𝑆𝐿× 𝐼𝑆𝐿× cos 𝜙𝑆= √3 × 237.23 × 128.6 × 0.9874 = 52.15 𝑀𝑊

% 𝜂 = 𝑃𝑅

𝑃𝑆 × 100 = 50

52.15× 100 = 95.87%

% 𝑉. 𝑅 = 𝑉𝑆𝑃

𝐴 − 𝑉𝑅𝑃

𝑉𝑅𝑃 × 100 =

136.97

0.9367 − 127.017

127.017 × 100 = 146.22 − 127.017

127.017 100 = 19.21

127.017100 = 15.12%

Receiving End Power: We know that

𝑆

𝑅

= 𝑉

𝑅

𝐼

𝑅

= 𝑃

𝑅

+ 𝑗𝑄

𝑅

………….. (1)

𝐴 = |𝐴|∠𝛼 , 𝐵 = |𝐵|∠𝛽, 𝐶 = |𝐶|∠𝜃, 𝐷 = |𝐷|∠𝛼, 𝑉

𝑆

= |𝑉

𝑆

|∠𝛿, 𝑉

𝑅

= |𝑉

𝑅

|∠0, 𝐼

𝑅

= |𝐼

𝑅

|∠ − 𝜙, 𝐼

𝑅

= |𝐼

𝑅

|∠ + 𝜙,

𝑉

𝑆

= 𝐴 𝑉

𝑅

+ 𝐵 𝐼

𝑅

𝐼

𝑅

= 𝑉

𝑆

𝐵 − 𝐴 𝑉

𝑅

𝐵 = |𝑉

𝑆

|

|𝐵| ∠𝛿 − 𝛽 − |𝐴||𝑉

𝑅

|

|𝐵| ∠𝛼 − 𝛽

𝐼

𝑅

=

|𝑉𝑆|

|𝐵|

∠𝛽 − 𝛿 −

|𝐴||𝑉𝑅|

|𝐵|

∠𝛽 − 𝛼 ……… (2)

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑒𝑞𝑛 (2) 𝑏𝑦 |𝑉

𝑅

|, 𝑤𝑒 𝑔𝑒𝑡

𝑉

𝑅

𝐼

𝑅

= |𝑉

𝑆

||𝑉

𝑅

|

|𝐵| ∠𝛽 − 𝛿 − |𝐴||𝑉

𝑅

|

2

|𝐵| ∠𝛽 − 𝛼

𝑆

𝑅

= |𝑉

𝑆

||𝑉

𝑅

|

|𝐵| ∠𝛽 − 𝛿 − |𝐴||𝑉

𝑅

|

2

|𝐵| ∠𝛽 − 𝛼

(25)

𝑃

𝑅

+ 𝑗𝑄

𝑅

= |𝑉

𝑆

||𝑉

𝑅

|

|𝐵| ∠𝛽 − 𝛿 − |𝐴||𝑉

𝑅

|

2

|𝐵| ∠𝛽 − 𝛼

𝑃

𝑅

=

|𝑉𝑆|𝐵|||𝑉𝑅|

cos(𝛽 − 𝛿) −

|𝐴||𝑉|𝐵|𝑅|2

cos(𝛽 − 𝛼) ……… (3)

𝑄

𝑅

=

|𝑉𝑆|𝐵|||𝑉𝑅|

sin(𝛽 − 𝛿) −

|𝐴||𝑉|𝐵|𝑅|2

sin(𝛽 − 𝛼) ………….. (4)

Soln.: This is an example of of Short transmission line.

𝑅 = 0.0195 × 20 = 0.39Ω, 𝐿 = 0.60 × 10

−3

× 20 = 0.012 𝐻, 𝑋

𝐿

= 2𝜋𝑓𝐿 𝑋

𝐿

= 2𝜋 × 60 × 0.012 = 4.5216 Ω

𝑍 = 𝑅 + 𝑗 𝑋

𝐿

= 0.39 + 𝑗4.5216 = 4.5238∠85.07 Ω

𝐴 = 𝐷 = 1, 𝐵 = 𝑍 = 4.5238∠85.07 Ω , 𝐶 = 0 𝐼

𝑅𝑃

= 4500 × 10

3

10.2 × 10

3

× 0.8 = 551.47 ∠ − 36.86 𝐴

(𝑎) 𝑉𝑆𝑃 = 𝐴𝑉𝑅𝑃+ 𝐵𝐼𝑅𝑃 = 1 × 10.2 × 103∠0 +

4.5238∠85.07 × 551.47 ∠ − 36.86

=

10.2 × 103∠0 + 2.494 × 103∠48.21

𝑉𝑆𝑃 = 12.0∠8.90 𝐾𝑉

𝑃𝑆𝑃 = 𝑉𝑆𝑃× 𝐼𝑆𝑃× cos 𝜙𝑆

𝐼𝑆𝑃 = 𝐼𝑅𝑃= 551.47∠ − 36.86, 𝜙𝑆= 𝛿 + 𝜙𝑅 = 8.9 + 36.86 = 45.76 cos 𝜙𝑆= cos 45.76 = 0.6976 (𝑙𝑎𝑔𝑔𝑖𝑛𝑔)

𝑃𝑆𝑃 = 12 × 103× 551.47 × cos 45.76 = 4.6168 × 106 𝑊

%𝜂 = 𝑃𝑅𝑃

𝑃𝑆𝑃 × 100 = 4.5 × 106

4.6168 × 106× 100 = 97.47

% 𝑉. 𝑅 = 𝑉𝑆𝑃

𝐴 − 𝑉𝑅𝑃

𝑉𝑅𝑃 × 100 = 𝑉𝑆𝑃− 𝑉𝑅𝑃

𝑉𝑅𝑃 × 100 =(12.0 − 10.2) × 103

10.2 × 103 × 100 = 17.64%

(b) %𝑉. 𝑅 = 0.6 × 0.1764 × 100 = 10.58%

(26)

𝑉. 𝑅 = 𝑉𝑆𝑃−𝑉𝑅𝑃

𝑉𝑅𝑃 = 𝑉𝑆𝑃−10.2×103

10.2×103

0.1058 × 10.2 × 103 = 𝑉𝑆𝑃− 10.2 × 103 1.080 × 103+ 10.2 × 103= 𝑉𝑆𝑃

𝑉𝑆𝑃 = 11.28 × 103∠𝛿 volts 𝑓𝑟𝑜𝑚 𝑒𝑞𝑛 (3)

𝑃

𝑅

= |𝑉

𝑆𝑃

|

|𝑉

𝑅

|

|𝐵| cos(𝛽 − 𝛿

) − |𝐴||𝑉

𝑅

|

2

|𝐵| cos(𝛽 − 𝛼) 𝑃

𝑅

= 11.28 × 10

3

× 10.2 × 10

3

4.5238 cos(85.07 − 𝛿

) − 1 × (10.2 × 10

3

)

2

4.5238 cos(85.07 − 0) 𝑃

𝑅

= 25.4334 × 10

6

cos(85.07 − 𝛿

) − 23 × 10

6

× 0.086

𝑃

𝑅

= 25.4334 × 10

6

cos(85.07 − 𝛿

) − 1.978 × 10

6

……… (5)

𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑠𝑎𝑚𝑒 𝑖. 𝑒. 𝑃

𝑅

= 𝑃

𝑅

= 4500 × 10

3

𝑊 4500 × 10

3

= 25.4334 × 10

6

cos(85.07 − 𝛿

) − 1.978 × 10

6

4500 × 10

3

+ 1.978 × 10

6

= 25.367 × 10

6

cos(85.07 − 𝛿

) 25.367 × 10

6

cos(85.07 − 𝛿

) = 6.478 × 10

6

cos(85.07 − 𝛿

) = 6.478 × 10

6

25.4334 × 10

6

= 0.2547 85.07 − 𝛿

= cos

−1

0.2547 = 75.24

𝛿

= 85.07 − 75.24 = 9.826

𝑜

𝑓𝑟𝑜𝑚 𝑒𝑞𝑛 (4)

𝑄

𝑅

= |𝑉

𝑆

||𝑉

𝑅

|

|𝐵| sin(𝛽 − 𝛿) − |𝐴||𝑉

𝑅

|

2

|𝐵| sin(𝛽 − 𝛼)

𝑄

𝑅

= 25.4334 × 10

6

sin(85.07 − 9.85) − 23 × 10

6

sin(85.07 − 0)

𝑄

𝑅

= 25.4334 × 10

6

sin(75.22) − 23 × 10

6

× sin(85.07)

(27)

𝑄

𝑅

= 25.4334 × 10

6

× 0.967 − 23 × 10

6

× 0.9963 = 24.59 × 10

6

− 22.915 × 10

6

𝑄

𝑅

= 1.675 × 10

6

𝑉𝐴𝑟

𝑄

𝑅

= 𝑉

𝑅𝑃2

𝜔𝐶

𝐶 = 𝑄

𝑅

𝜔𝑉

𝑅𝑃2

= 1.675 × 10

6

2𝜋 × 60 × (10.2 × 10

3

)

2

= 1.675 × 10

6

3.9222 × 10

10

= 42.70 𝜇𝐹

𝑃𝑆𝑃 = 𝑉𝑆𝑃× 𝐼𝑆𝑃× cos 𝜙𝑠 𝐼𝑆𝑃 = 𝐼𝐶+ 𝐼 ….. (6)

𝐼 = 551.47∠ − 36.86, 𝐼𝐶 = 𝑗𝑉𝑅𝑃

𝑋𝐶 = 𝑗𝑉𝑅𝑃𝜔𝐶 = 𝑗10.2 × 103× 2𝜋 × 60 × 42.70 × 10−6 = 164.2 ∠90 A 𝐼𝑆𝑃 = 𝐼𝑅𝑃= 𝐼𝐶+ 𝐼 = 164.2 ∠90 + 551.47∠ − 36.86 = 471.64∠ − 20.68 𝐴

𝜙𝑆 =

𝛿

+ 20.68 = 9.826 + 20.68 = 30.5

cos 𝜙𝑆 = cos 30.5 = 0.8615 𝑙𝑎𝑔𝑔𝑖𝑛𝑔 𝑃𝑆𝑃 = 𝑉𝑆𝑃× 𝐼𝑆𝑃× cos 𝜙𝑆

𝑃𝑆𝑃 = 11.28 × 103× 471.64 × 0.8615 = 4.5832 × 106 𝑊

%𝜂= 𝑃𝑅

𝑃𝑆𝑃× 100 = 4.5 × 103

4.5832 × 106× 100 = 98.18 %

(c) By shunt compensation, power factor improves from 0.8 to 0.8615 but the power improves negligibly.

(28)

References

Related documents

Active, reactive power and various parameters like power factor and DC line voltage of DFIG based WECS has been controlled through LQROPC controller and compared with sliding mode

National Institute of Technology, Rourkela Page 6 A poor power factor can be the result of either a significant phase difference between the voltage and current at

This is to certify that the thesis entitled “Condition Assessment of High Voltage Power Transformer Using Polarisation and Depolarisation Current Measurement Technique”,

Basically UPQC (Unified Power Quality conditioner) is a equipment which is used for compensate for voltage distortion and voltage unbalance in a power system so that the voltage

The quality of electric power is characterized by parameters such as “continuity of supply, voltage magnitude variation, transients and harmonic contents in electrical

The total harmonic distortion and unbalance factors are measured for the source current and power quality factor is derived considering the measured harmonics and unbalances of the

Index Terms—CMOS, dynamic voltage and threshold scaling (DVTS), in-situ power monitor, leakage current control, low power, power optimum point, sleep transistor, variable body

Voltage generated by cow dung using double chamber MFC was recorded at an interval of 1&1/2 hr per day for the entire time period of 6 days as shown in Fig 4-9.. The