• No results found

APSYM 2014

N/A
N/A
Protected

Academic year: 2022

Share "APSYM 2014"

Copied!
443
0
0

Loading.... (view fulltext now)

Full text

(1)

͑͑ ͑

͑ ͑ ΁΃΀ʹͶͶ͵ͺͿ͸΄͑΀ͷ͑

14

th

Biennial International Symposium on

ANTENNAS AND PROPAGATION

17-19 December, 2014

DEPARTMENT OF ELECTRONICS Cochin University of Science and Technology

Kochi – 682 022

Co-sponsored by:

IEEE APS Kerala Chapter IEEE Student Branch, Cochin University Grants Commission Indian National Science Academy All India Council for Technical Education Department of Atomic Energy (Govt. of India) Department of Science & Technology (Govt. of India) Council of Scientific and Industrial Research (Govt. of India)

Kerala State Council for Science Technology and Environment (Govt. of Kerala) GE- General Electric Company, Bangalore

CST- Computer Simulation Technology Entuple Technologies Pvt Ltd

Keysight Techologies Inc.

Published by the Directorate of Public Relations and Publications, Cochin University of Science & Technology, for Department of Electronics,

Cochin 682 022, INDIA December 2014

ISBN: 978-93-80098-60-8

(2)

3URFHHGLQJVRI$36<0

Organised by

'HSDUWPHQWRI(OHFWURQLFV

&RFKLQ8QLYHUVLW\RI6FLHQFHDQG7HFKQRORJ\

.RFKL,QGLD

3KRQH )D[

85/ZZZGRHFXVDWHGX

Editors

3URI.*1DLU 3URI.9DVXGHYDQ 3URI&.$DQDQGDQ 3URI30RKDQDQ

Co-sponsored by

,((($36.HUDOD&KDSWHU

,(((6WXGHQW%UDQFK&RFKLQ 8QLYHUVLW\*UDQWV&RPPLVVLRQ ,QGLDQ1DWLRQDO6FLHQFH$FDGHP\

$OO,QGLD&RXQFLOIRU7HFKQLFDO(GXFDWLRQ 'HSDUWPHQWRI$WRPLF(QHUJ\*RYWRI,QGLD 'HSDUWPHQWRI6FLHQFH 7HFKQRORJ\*RYWRI,QGLD

&RXQFLORI6FLHQWLILFDQG,QGXVWULDO5HVHDUFK*RYWRI,QGLD

.HUDOD6WDWH&RXQFLOIRU6FLHQFH7HFKQRORJ\DQG(QYLURQPHQW*RYWRI.HUDOD

*(*HQHUDO(OHFWULF&RPSDQ\%DQJDORUH Ǧ‘’—–‡”‹—Žƒ–‹‘‡…Š‘Ž‘‰›

–—’Ž‡‡…Š‘Ž‘‰‹‡•˜––†

‡›•‹‰Š–‡…Š‘Ž‘‰‹‡•…Ǥ

&RS\ULJKW‹&5(0$'HSDUWPHQWRI(OHFWURQLFV&RFKLQ8QLYHUVLW\RI6FLHQFHDQG7HFKQRORJ\.RFKL,QGLD

$OOULJKWVUHVHUYHG1RSDUWRIWKLVSXEOLFDWLRQPD\EHUHSURGXFHGVWRUHGLQDUHWULHYDOV\VWHPRUWUDQVPLWWHGLQDQ\IRUP RUE\DQ\PHDQVHOHFWURQLFPHFKDQLFDOSKRWRFRS\LQJ DQGUHFRUGLQJRURWKHUZLVHZLWKRXWWKHSULRUSHUPLVVLRQ RIWKHSXEOLVKHU

7KLVERRNKDVEHHQSXEOLVKHGIURP&DPHUDUHDG\FRS\VRIWFRS\SURYLGHGE\WKHFRQWULEXWRUV

,1&/8'(,1'(;

Published by the Directorate of Public Relations and Publications for CREMA, Department of Electronics, Cochin University of Science & Technology, Cochin 682 022, INDIA and printed at Print Express, Cochin, INDIA.

ISBN: 978-93-80098-60-8

(3)

&+$,50$1:(/&20(6<28

'HDUIULHQG

:H DUH KDSS\ WR QRWH WKDW \RX DUH YLVLWLQJ &RFKLQ WKH YLEUDQW FLW\ LQ WKH EHDXWLIXO VWDWH RI .HUDOD ,QGLD WR DWWHQG

$36<0 WKH $QWHQQDV DQG SURSDJDWLRQ 6\PSRVLXP :H WKH PHPEHUV RI WKH RUJDQL]LQJ FRPPLWWHH RI

$36<0 DUH ORRNLQJ IRUZDUG WR PHHW\RXVRRQ

³$36<0´ LV WKH WK

6\PSRVLXPLQWKHVHULHVZKLFKZHVWDUWHGLQ,QVSLWHRIGHPDQGVIURPPDQ\FRUQHUVWR RUJDQL]H WKH 6\PSRVLXP LQ VRPH &LW\ +RWHOV LQ &RFKLQ ZH GHFLGHG WR KDYH LW LQ RXU 8QLYHUVLW\&DPSXVEHFDXVHRIWZRUHDVRQV0DLQO\WKHGLVWLQJXLVKHGYLVLWRUVIURPYDULRXV SDUWVRIWKHZRUOGZLOOVHHRXU8QLYHUVLW\DORQJZLWKRXUDQWHQQDODERUDWRU\ZKLFKZHEXLOW ZLWKXWPRVWFDUHDQGKRSHV6HFRQGO\RXUUHVHDUFKVWXGHQWVDQGIDFXOW\PHPEHUVJHWDPSOH RSSRUWXQLWLHVWRLQWHUDFWZLWKWKHYLVLWLQJLQWHOOHFWXDOVDQGH[SHUWV7KHVHH[SHFWDWLRQVFDPH WUXHLQPDQ\RFFDVLRQVLQWKHSDVW:HDUHWKDQNIXOWRDOOJUHDWSHUVRQDOLWLHVZKRFRQWULEXWHG LQWKLVUHJDUG

2YHU SDSHUV DUH VFKHGXOHG WR EH SUHVHQWHG GXULQJ $36<0 LQ 7KH RUJDQL]LQJ FRPPLWWHH KDYH SODQQHG DQ H[FHOOHQW WHFKQLFDO SURJUDPPH ZLWK D QXPEHU RI LQYLWHGWDONVE\JUHDW6FLHQWLVWV(QJLQHHUVLQWKLVILHOG

3URFHHGLQJVRIWKHHDUOLHU6\PSRVLDDUHDYDLODEOHZLWKRUJDQL]HUVRI$36<0 7KRVHZKRZDQWWRSXUFKDVHFRSLHVPD\SOHDVHFRQWDFWWKHP

:LVK\RXDOODZDUPZHOFRPHRQFHDJDLQDQGKRSLQJYHU\LQWHUHVWLQJGLVFXVVLRQV

&RFKLQ

1RYHPEHU 3URI.*1DLU

(4)

OUR TRIBUTE TO GREAT PIONEERS

JAMES CLERK MAXWELL

Developed electromagnetic theory of radiation by his mathematical magic.

His theoretical prediction of the existence of electric and magnetic fields associated with wave propagation carrying energy of electromagnetic nature was a breakthrough in the history of science. A new era of electromagnetism was thus opened by this great scientist.

HEINRICH HERTZ

Experimentally demonstrated the generation, propagation and detection of electromagnetic waves. Thus he gave a firm experimental support for the theoretical conclusions drawn by James Clerk Maxwell.

JAGADISH CHANDRA BOSE

The first Indian scientist who marked his footprints in the world of electromagnetics. In fact, Bose generated millimeter waves using a circuit developed in his laboratory and used these waves for communication, much earlier than the western scientists. He also developed microwave horn antennas which are still employed in many communication applications.

(5)

ORGANISING COMMITTEE

Šƒ‹”ƒ ”‘ˆǤǤǤƒ‹”

‡”‹–—•”‘ˆ‡••‘”

‹…‡ǦǦŠƒ‹”ƒ ”‘ˆǤǤƒ•—†‡˜ƒ

‡”‹–—•”‘ˆ‡••‘”

‹”‡…–‘” ”‘ˆǤǤǤƒƒ†ƒ

”‘ˆ‡••‘”Ƭ‡ƒ†

‡…Š‹…ƒŽ”‘‰”ƒ‡

‡‰‹•–”ƒ–‹‘

……‘‘†ƒ–‹‘

”‘ˆǤǤ‘Šƒƒ

”‘ˆǤǤǤǤ‹ŽŽƒ‹

••‘…Ǥ”‘ˆǤƒ‡•—”‹‡

”‘ˆǤ‡••ƒƒŠ‘ƒ•

••‘…Ǥ”‘ˆǤ—’”‹›ƒǤǤ

‡„‡”•

‘ƒ”†‘ˆ‡ˆ‡”‡‡•

Prof. K G Nair Dr.Thomaskutty Mathew Dr. P Abdulla

Prof. Ramesh Garg Dr. Mythili Palayyan Dr. Shameena V.A

Prof. K T Mathew Dr. Suma M N Dr. Deepthi Das Krishna

Prof. K.J. Vinoy Dr. Sarin V.P Dr. Sujith R

Dr. P. Muralikrishna Dr. Gopikrishna Dr. Gijo Augustine

Dr. Raveendranath U Nair Dr. Sreejith M Nair Dr. Manoj Joseph

Dr. S Mridula Dr. Rohit K Raj Dr. Nisha Nassar

Dr. Binu Paul Dr. Anupam ramachandran Dr. Deepu V

Mr. Aji George Mrs. Anila P V Mrs Anitha R Mr. Deepak U

Ms. Dibin Mary George Mr. Dinesh R

Mr. Jayakrishnan M P Mrs. Libi Mol V A Mr. Lindo A O Mr. Mohan Kumar Mrs. Nayana Mr. Neeraj Puskaran Mr. Nijas C M Mr. Prakash K C Mr. Prasanth P P

Mrs. Roshna T K Mrs. Sajitha V R Mrs. Sarah Jacob Mr. Satheesh Chandran Mrs. Sabna N

Mr. Shameer Mohammed Mr. Suraj Kamal

Ms. Sreekala P S Mr. Sujith Kumar S Pai Mrs. Sumitha Mathew Mrs. Revathi

Ms. Theresa Bernard Mr. Ullas G Kalappura Mr. Vinesh P V Mr. Vivek R Kurup

(6)

MILESTONES IN THE HISTORY OF ELECTROMAGNETICS

1747 Benjamin Franklin Types of Electricity 1918 Watson Ground wave propagation

1773 Henri Cavendish Inverse square law 1919 Southworth Lecher line circuit

1785 Coulomb Law of electric force Heinrich Barkhausen Triode electron tube at 1.5

1813 Gauss Divergence theorem & Kurz GHz

1820 Ampere Ampere's experiment 1920 Hull Magnetron

1826 Ohm Ohm’s law Yagi and Uda Yagi-Uda antenna

1831 Faraday Electromagnetic Induction 1921 HuII Smooth bore Magnetron

1837 Morse Telegraphy 1922 Affel Directional Coupler

1855 Sir William Thomson Transmission lines theory Brillouin Acoustooptic Effect

1864 Lord Rayleigh Theory of Sound 1923 HH Beverage Beverage antenna

Propagation 1925 Van Boetzelean Short wave Radio

1865 James Clerk Maxwell Electromagnetic field Appleton Ionospheric layer

equations 1927 Okabe Split-anode Magnetron

1873 James Clerk Maxwell Unified theory of Electricity 1929 Clavier Microwave Communication

and Magnetism 1930 Hansen Resonant cavity

1876 Graham Bell & Gray Telephone Karl G Jansky Bruce Curtain antenna

1883 Thomas Alva Edison Electron Emission from Barrow L Waveguides

Heated Filament 1931 Marconi 600 MHz radio link in Italy

1885 Heinrich Hertz Electromagnetic Wave Andre G Clavier Microwave Radio

1887 Heinrich Hertz Propagation

Spark plug experiment transmission across English

Channel

1888 Heinrich Hertz Half-wave dipole antenna 1932 Southworth Circular Waveguide

1890 Ernst Lecher Lecher wire Marconi 57 cm Radio telephone and

1893 Heinrich Hertz Spark Gap Generator teleprinter service

1893 Thomson Waveguide theory Claud Cleton Microwave spectroscopy

1894 Marconi Wireless Telegraphy 1933 Barrow Circular Wavegiude

1895 Jagadish Chandra

Bose 5-6 mm wavelength Signal

Transmission

Armstrong Propagation

Frequency modulation

1897 Lord Rayleigh Boundary values and 1934 Schelkunoff TE01 mode in Circular

modes in Metallic cylinders Waveguide

Jagadish Chandra

Bose Horn antenna and Millimeter

wave Source 1935 Watson-Watt

Oscar Heil Experimental Radar Station Velocity modulation

1898 Lodge Tuned Transmitters and Watson watt RADAR

Receivers 1936 Southworth and Microwave propagation in

1900 Marconi TransAtlantic

Communication Barrow

G. H. Brown Circular Waveguide Turnstile antenna

1902 Weber Propagation in Hollow 1937 Varian Brothers Klystron

Fleming Tube1902 Vacuum Tube Janskey

Manson Radio Astronomy

Waveguide Filter

1903 Hulsmeyer Radar Russel & Varian Bros Klystron

1906 Fessenden Rotating Alternator and A, H. Boot , J T.

Thomas et.al audio modulation

Crystal Detector Randall

M. L. Oliphant Magnetron

Fessenden Radio broadcasting Pollard Radar aiming

1907 Dunwoody DeFroest Crystal detectors

Triode 1938 anti-aircraft guns

J. D. Kraus Corner reflector

1912 Eccles lonospheric propagation 1939 Barrow Magic Tee

1914 AT & T 170 kHz Radio Peterson et.al Diode Mixer

1915 Carson Single side-band transmission 1939 P. H. Smith Smith impedance

(7)

1940 Hansen

Quakenbush Leakywave Antenna UHF coaxial Connector

2002

George V

Planar Negative LC loaded

Bowen, Dummer et P P I Scope Eleftheriades Refractive media

al 2004 Thomas Purr et.al Miniaturized Directional

1942 Wheeler Stripline Technology Antenna

1943 Neill AT&T N-type connector

4.5 GHz Multichannel PPM 2006 John C Mather &

George F Smoot Microwave Back ground 2006 (CMB) Cosmic Microwave

digitally modulated Background Radiation

1944 Meyers et.al microwave Radio

Reflectometers 2008 Queens University,

Belfast Skin-tenna

1945 Kompfner TWT 2010 Michael Strano, Jae- Solar Funnel Antenna

1946 Clarke Forecasts geosynchrous Hee Han, and

J. D. Kraus Satellite Helical antenna Geraldine Paulus

SPAWAR System Sea water antenna

Percy Spencer Microwave oven Center Pacific

1947 AT &T 3.7-4.2 LOS link 2011 Gaeta et.al Slit time lenses 1948 Van der Ziel Non-linear capacitors 2012 Duke University Better invisibility cloak 1950 C. L. Dolph Dolph-Tchebyscheff array 2014 Universiti Teknologi smart fluorescent antenna

1953 Townes Ammonia Maser Malaysia

1954 Deschamps Towns Microstrip antenna

Maser

1955 Page Monopulse Radar

1956 Esaki Tunnel Diode

1957 Bloembergen

Kroemer Three level Maser

Hetrojunction Transistor

Bakanowski et.al Varactor

Hines et.al

V. H. Rumsey Parametric Amplifier

Frequency independent

antenna

Weiss Parametric amplifier

1958 Bloembergen

John D Dyson Solid state Maser

Spiral antenna

Read Read diode

Space Communication

1959 Maiman D. Wigst Isbell Ruby Laser

Log periodic antenna

1968 Victor Veselago Predicted DNG Materials

1969 Wen Coplanar Line

1970 Silvester FEM

Byron Microstrip array

1971 Itoh and Mittra Wave Analysis of Microstrip

1975 Bekati Relativistic cavity Magnetron

1980 Mimura HEMT

1986 Didenko et. al. Advance relativistic

Magnetron

1988 S. K. Khamas High Tc Super conducting

dipole

1992 Victor Trip, Johnson Paste-on Antenna

1993 wang Te-Kao Wu et.al Multiple Diachronic Surface

Cassegrain Reflector

1996 Clorfeine & Delohh TRAPATT diode

1996 John W Mc Carkle Microstrip DC to GHz Field

Stacking Balun

(8)
(9)

CONTENTS

Session Title Page

I Microstrip antennas 1 13

II Microwave Devices 1 39

III Biomedical Applications 55

IV Antenna Arrays 77

V Microwave Devices 2 129

VI Computer Aided Design and Communications 155

VII Microstrip Antennas -2 181

VIII UWB Antennas 221

IX Antennas 253

X RFID and FSS 299

XI Microwave Devices 3 335

XII Microstrip Antennas 3 383

XIII Invited Talks 431

XIV Author Index 441

(10)
(11)

RESEARCH SESSION 1

MICROSTRIP ANTENNAS I

(12)
(13)

ͲͲ͵ǤͲͲͲͶǤͲͲ ͳ ͳ

Ǧ

Chair: Prof. Satish Sharma, San Diego State University, USA.

1R 3DSHU 3DJH

'LVWULEXWHG 5HDFWLYH 1HDUILHOG 3DUDVLWLF (OHPHQW %DVHG &RPSDFW

&3:)HG$QWHQQDIRU1HDUILHOG6HQVRU$SSOLFDWLRQV 6XMLWK5DPDQ5RELQ$XJXVWLQH$QGHUV5\GEHUJ

0LFURZDYH*URXS'HSWRI(QJLQHHULQJ6FLHQFHV$QJVWURP/DERUDWRU\

8SSVDOD 8QLYHUVLW\ 8SSVDOD 6ZHGHQ (PDLO 6XMLWK5DPDQ#LHHHRUJ

%HDP 6ZLWFKLQJ $QWHQQD DW *+] IRU :LUHOHVV %RG\ $UHD 1HWZRUN$SSOLFDWLRQ

$QXSDP5&KDQGUDQ6HQDQ0RUULVRQ5XLIHQJ=KDQJ1LFN7LPPRQV -LP 0RUULVRQ :L6$5 /DE /HWWHUNHQQ\ ,QVWLWXWH RI 7HFKQRORJ\

/HWWHUNHQQ\,UHODQG. E-mail: [email protected]

&RPSDFWVLQJOHVKRUWHGKH[DJRQDOPLFURVWULSSDWFKDQWHQQD

. 3 5D\ 6XFKLWUD 0DMXPGDU 6 6 .DNDWNDU 5* .DUDQGLNDU

6$0((5,,7&DPSXV3RZDL0XPEDL ,QGLD.-6RPDL\D

&2( 9LG\DYLKDU 0XPEDL ,QGLD E-mail:

[email protected]

%URDGEDQGRIIVHW&3:)HG6TXDUH6ORW$QWHQQD

$PLW $ 'HVKPXNK $PH\D $ .DGDP 6XGHVK $JUDZDO DQG . 3 5D\

'-6DQJKDYL&ROOHJHRI(QJLQHHULQJ9LOH3DUOH

0XPEDL±Email: [email protected]

5)06'LYLVLRQ6$0((5,,7&DPSXV0XPEDL

'HVLJQ)DEULFDWLRQDQG3HUIRUPDQFH$QDO\VLVRI0LFURVWULS$QWHQQDZLWK 0,02,PSOHPHQWDWLRQ

0RKDPPDG$PHHQ0RKDPPHG,VPDLO+

&RPPXQLFDWLRQ(QJLQHHULQJ.0($(QJJ&ROOHJH.HUDOD,QGLD (PDLOPRKDPPDGPQ#JPDLOFRPLVPDLO#NPHDFROOHJHDFLQ

(14)
(15)

0LFURZDYH*URXS6ROLG6WDWH(OHFWURQLFV'HSWRI(QJLQHHULQJ6FLHQFHV$QJVWURP/DERUDWRU\

8SSVDOD8QLYHUVLW\8SSVDOD6ZHGHQ(PDLO6XMLWK5DPDQ#LHHHRUJ

Abstract²An Electrically Small metamaterial inspired antenna with narrow bandwidth suitable for nearfield sensor application is presented. The operation principle is based on a Distributed Reactive Nearfield Parasitic Element (DRNPE). The DRNPE unit cell with high distributed inductive reactance is introduced near a highly capacitive open ended CPW transmission line, resulting in good impedance matching. The resonant behavior is independent of the transmission line parameters and hence can be tuned with respect to the DRNPE parameters. The prototype used as a sensor for the measurement of dielectric constant variation is also discussed. The simulation (Ansoft HFSS) and measurement (HP8510C Vector Network Analyzer) results are in good agreement.

, ,1752'8&7,21

1RZDGD\V WKH GHYHORSPHQWV RI HOHFWULFDOO\ VPDOO DQWHQQDV KDYH DWWUDFWHG UHVHDUFKHUV DQG VFLHQWLVWV GXHWRWKHLUYDVWDSSOLFDWLRQLQZLUHOHVVLQGXVWU\$ODUJHLPSHGDQFHWUDQVIRUPDWLRQZLOOEHUHTXLUHGWR PDWFK HOHFWULFDOO\ VPDOO DQWHQQDV WR D W\SLFDO Ÿ V\VWHP EHFDXVH RI WKHLU YHU\ VPDOO UDGLDWLRQ UHVLVWDQFHDQGYHU\ODUJHFDSDFLWLYHUHDFWDQFH$FRPSHQVDWLQJHOHPHQWZLWKODUJHLQGXFWLYHUHDFWDQFH DQGUDGLDWLRQUHVLVWDQFHFDQPLWLJDWHWKLVWRSURYLGHJRRGLPSHGDQFHPDWFKLQJ

7KHUH KDYH EHHQ ZLGH YDULHWLHV RI UHFHQW DSSURDFKHV WR DFKLHYH HOHFWULFDOO\ VPDOO DQWHQQDV

=LRONRZVNL KDYH EHHQ RYHUFRPH WKLV SUREOHP RQ VPDOO HOHFWULF GLSROHV >@ E\ SODFLQJ (SVLORQ 1HJDWLYH(1* PDWHULDOV DQG E\ GHVLJQLQJ DQWHQQDV IRU 9+) DQG 8+) DSSOLFDWLRQV >@ 7KHVH DOVR LQFOXGHWKHXVDJHRIVSDFHILOOLQJ0HDQGHULQJVLJQDOVWULSDQWHQQDV>@IUDFWDOEDVHGDQWHQQDV>@DQG

*HRPHWULFDOO\PRGLILHGDQWHQQDV>@

,QWURGXFWLRQRIFDSDFLWLYHRULQGXFWLYHHOHPHQWVERWKOXPSHGDQGLQWHJUDOLQDQGDURXQGWKHUDGLDWLQJ VWUXFWXUH LV DOVR XVHG WR JHQHUDWH HOHFWULFDOO\ VPDOO DQWHQQDV >@ 7KDW LV WKH XVDJH RI LQGXFWRUV DQG FDSDFLWRUVDVDPDWFKLQJFLUFXLWWRDFKLHYHUHVLVWLYHPDWFKLQJLVWKHFRPPRQGHVLJQRSWLRQVDYDLODEOH 0HWDPDWHULDOVEDVHGRU0HWDPDWHULDOLQVSLUHGDQWHQQDVDUHRWKHULPSRUWDQWWHFKQLTXHVZLGHO\XVHGWR GHYHORSHOHFWULFDOO\VPDOODQWHQQDV>@

%XW WKH H[SORUDWLRQ RI HOHFWULFDOO\ VPDOO DQWHQQDV RQ SODQDU VWUXFWXUHV HVSHFLDOO\ RQ FRSODQDU ZDYHJXLGH VWUXFWXUHV LV IRXQG WR EH YHU\ XVHIXO IRU ZLUHOHVV DQG ,QWHJUDWHG &LUFXLW,& LQGXVWU\

&RSODQDU ZDYHJXLGH EDVHG VWUXFWXUHV 7UDQVPLVVLRQ OLQHV DQWHQQDV ILOWHUV HWF KDYH UHFHLYHG JUHDW DWWHQWLRQ LQ UHFHQW \HDUV GXH WR WKHLU HDVH RI LQWHJUDWLRQ ZLWK 0RQROLWKLF 0LFURZDYH ,QWHJUDWHG

&LUFXLWV00,&ZLGHEDQGZLGWKIOH[LELOLW\WRZDUGVPXOWLEDQGRSHUDWLRQORZUDGLDWLRQOHDNDJHOHVV GLVSHUVLRQ HWF 6WXGLHV RQ &RSODQDU :DYHJXLGH 7UDQVPLVVLRQ OLQH E\ LQWURGXFLQJ PHWDPDWHULDO VWUXFWXUHVWRFRQYHUWWKHPWRILOWHUV>@VXLWDEOHIRU00,&>@DQGIRUDQWHQQDV>@KDYHEHHQFDUULHG RXWE\UHVHDUFKHUVEXWWKHVHDUHDFKLHYHGHLWKHUE\PRGLI\LQJWKHVLJQDOVWULSRUJURXQGSODQHRI&3:

$WHPSHUDWXUHVHQVRUVKRZLQJDFRUUHVSRQGLQJIUHTXHQF\VKLIWZLWKUHVSHFWWRWHPSHUDWXUHLVSUHVHQWHG

>@EDVHGRQDUHVRQDQWDQWHQQDDQGDGLHOHFWULFUHVRQDWRU%XWDQWHQQDLWVHOIDFWLQJDVDVHQVRULVWKH DUHDWREHH[SORUHG,QWKLVSDSHUDQHOHFWULFDOO\VPDOOPHWDPDWHULDOLQVSLUHGHOHPHQWLVXVHGWRILQGWKH FKDQJH LQ UHVRQDQW IUHTXHQF\ ZLWK UHVSHFW WR WKH GLHOHFWULF FRQVWDQW RI PHGLXP ,W LV IRXQG WKDW WKH LPSHGDQFHPDWFKLQJDWWKHUHVRQDQWIUHTXHQF\RIWKLVUHVRQDQWDQWHQQDLVVWDEOHDQGKHQFHLVVXLWDEOH IRUQHDUILHOGDSSOLFDWLRQV

',675,%87('5($&7,9(1($5),(/'3$5$6,7,&(/(0(17%$6('

&203$&7&3:)('$17(11$)251($5),(/'6(1625

$33/,&$7,216

Sujith Raman, Robin Augustine, Anders Rydberg

(16)

)LJXUH*HRPHWU\RI$QWHQQDD)URQWYLHZE%DFNYLHZ'513(F6LGHYLHZ :J PP/J PP6: PP6/ /V PPJ PP:6 PP*6 PPK PPDQGࣅU

7KHLQYHVWLJDWLRQRIWKH GHYHORSHGQRYHO DQWHQQDGHSLFWHGKHUH FOHDUO\H[SODLQVWKHFRQYHUVLRQRI KLJKLPSHGDQFHRSHQHQGHG&3:)HGWUDQVPLVVLRQOLQHLQWRDUHVRQDQWDQWHQQD$'LVWULEXWHG5HDFWLYH 1HDUILHOG3DUDVLWLF(OHPHQW'513(LVXVHGWRUHGXFHWKHHIIHFWLYHHOHFWULFDOOHQJWKRIWKHUHVRQDWRU 7KHWRWDOVL]HUHGXFWLRQRILVREWDLQHGDVFRPSDUHGWRDQRUPDO&RSODQDU:DYHJXLGHIHGPRQRSROH DQWHQQD7KLVVHQVRULVIRXQGWREHVXFFHVVIXOLQUHFRJQL]LQJWKHYDULDWLRQLQGLHOHFWULFFRQVWDQWIURP DLU WR ZDWHU ZLWKRXW PXFK FKDQJH LQ LPSHGDQFH PDWFKLQJ 0RUHRYHU RQO\ WZR '513(

SDUDPHWHUVDUHJRYHUQLQJWKHUHVRQDQWIUHTXHQF\DQGKHQFHSURYLGLQJDVLJQLILFDQWGHJUHHRIIUHHGRPWR WKHGHVLJQHUV

,, *(20(75<2)$17(11$

7KHJHRPHWU\FRQVLVWVRIDQRSHQHQGHG&3:WUDQVPLVVLRQOLQHILJXUHDHWFKHGRQRQHVLGHRIWKH VXEVWUDWH ZLWK VLJQDO VWULS ZLGWK 6: DQG ODWHUDO JURXQG SODQH GLPHQVLRQ /J [ :J Ȝ[ Ȝ PPZKHUHȜLVWKHIUHHVSDFHZDYHOHQJWKFRUUHVSRQGLQJWRWKHUHVRQDQWIUHTXHQF\7KHVLJQDOVWULS ZLGWK : DQG JDS J DUH FKRVHQ IRU ȍ LPSHGDQFH '513( D YHUWLFDOO\ PHDQGHUHG PHWDOOLF VWUXFWXUHLVRQRWKHUVLGHRIWKHVDPHVXEVWUDWHDVVKRZQLQILJXUHE7KHZLGWKRIWKHHOHPHQW:V LV FRQVWDQW WKURXJKRXW WKH VWUXFWXUH 7KH SURWRW\SH IDEULFDWHG IRU *+] RQ D VXEVWUDWH RI GLHOHFWULF FRQVWDQWDQGWKLFNQHVVPPKDVDQRYHUDOOGLPHQVLRQRIȜ [[

PP7KHVLGHYLHZRIDQWHQQDLVVKRZQLQILJXUHF

,,, 5(68/76$1'',6&866,216

$WWKHUHVRQDQWIUHTXHQF\RIDQ\DQWHQQDVWKHUHDOSDUWRILPSHGDQFHLVHTXDOWRȍDQGLPDJLQDU\

SDUWLVQHDUO\]HUR7KHUHIOHFWLRQFRHIILFLHQWRIDQRUPDORSHQHQGHG&3:)HGWUDQVPLVVLRQOLQHLVG%

DVVKRZQLQILJXUH7KLVLVEHFDXVHRIWKHKLJKUHIOHFWLRQDWWKHRSHQFLUFXLWHGHQGRIWKHWUDQVPLVVLRQ OLQH7KXVDQRSHQHQGHG&3:WUDQVPLVVLRQOLQHLVDQLQHIILFLHQWUDGLDWRUDWIUHTXHQF\UDQJHV*+]

7KHKLJKFDSDFLWLYHUHDFWDQFHDQGVPDOOUDGLDWLRQUHVLVWDQFHFUHDWHVDODUJHLPSHGDQFHPLVPDWFK7KXV LWLVDFKDOOHQJLQJWDVNIRUWKHDQWHQQDGHVLJQHUVWRFRQYHUWWKLVLQWRDQHIILFLHQWUDGLDWRU%\DGGLQJWKH '513(IRUFHVWKHVWUXFWXUHVWRWDOUHDFWDQFHWRQHDUO\]HURE\LQWURGXFLQJDODUJHGLVWULEXWHGLQGXFWLYH UHDFWDQFHWRFRPSHQVDWHWKHYHU\ODUJHFDSDFLWLYHUHDFWDQFHRIWKHRSHQHQGHG&3:0RUHRYHULWIRUFHV WKH LQSXW UHVLVWDQFH RI WKH UHVRQDQW V\VWHP WR QHDUO\ Ÿ 7KH UHIOHFWLRQ FKDUDFWHULVWLFV RI WKH RSHQ HQGHG&3:ZLWKDQGZLWKRXW'513(VKRZQLQILJXUHLQGLFDWHVWKDWWKHSURWRW\SHKDVDUHIOHFWLRQ FRHIILFLHQW DW ORZHU IUHTXHQF\ UHJLRQV ZLWK '513( 7KH UHDO DQG LPDJLQDU\ SDUW RI LPSHGDQFH ZLWK '513( LV DOVR VKRZQ LQ ILJXUH 7KXV '513( LV WKHUHIRUH H[SORLWHG LQ RUGHU WR FRPSHQVDWH WKH FDSDFLWLYHLPDJLQDU\SDUWRIWKHLQSXWLPSHGDQFHDQGPDWFKLWWRȍ'513(LVDGLIIHUHQWDSSURDFK LW LV SDUDVLWLF HOHPHQW FRQWULEXWLQJ WR WKH UHVRQDQFH DQG PDNHV WKH DQWHQQD HOHFWULFDOO\ VPDOO DQG LV HDVLO\PDWFKHGWRWKHVRXUFHZLWKRXWXVLQJDQ\H[WHUQDOPDWFKLQJHOHPHQWV

(17)

7KHYDULDWLRQVWXGLHVKDYHEHHQSHUIRUPHGWRNQRZWKHHIIHFWRIRQHSDUDPHWHUE\NHHSLQJDOOWKH

RWKHUSDUDPHWHUV FRQVWDQWDQGDUHVKRZQLQILJXUH7KHVWULSOHQJWK/VLV GHFUHDVHGRQERWKVLGHV ILJXUHDQGWKHIUHTXHQF\LVIRXQGWRLQFUHDVHGXHWRWKHUHGXFWLRQLQUHVRQDQWOHQJWKDQGYLFHYHUVD 6LPLODUO\ DV WKH VWULS ZLGWK :V LQFUHDVHV WKH UHVRQDQW IUHTXHQF\ LQFUHDVHV $V VXEVWUDWH KHLJKW K LQFUHDVHV WKH FRXSOLQJ EHWZHHQ '513( DQG &3: GHFUHDVHV ZLWK D FRUUHVSRQGLQJ GHFUHDVH LQ FDSDFLWDQFH& DQG LQGXFWDQFH/ VR IUHTXHQF\ LQFUHDVHVI SL ¥/& 7KXV WKHVH SDUDPHWHUV VKRZGLUHFW:V KDVZHOODVLQGLUHFW(UDQG/VPRQRWRQLFYDULDWLRQVZLWKIUHTXHQF\

7KHOHQJWKRIWKHWUDQVPLVVLRQOLQHLVYDULHGE\FKDQJLQJODWHUDOJURXQGSODQHOHQJWK/JDQG6LJQDO VWULS OHQJWK 6/ RI &3: $OO RWKHU SDUDPHWHUV UHPDLQ FRQVWDQW $V WKH WUDQVPLVVLRQ OLQH OHQJWK LV PP WKH '513( DOLJQV H[DFWO\ VLQFH /V /J DV LQ ILJXUH ,W LV LQWHUHVWLQJ WR QRWH WKDW DV WKH WUDQVPLVVLRQOLQHOHQJWKLVOHVVWKDQ'513(HOHPHQWWKHUHVRQDQWIUHTXHQF\LVRQWKHKLJKHUUHJLRQDQG LVVKLIWHGWRWKHIXQGDPHQWDOUHVRQDQFHDVLWDSSURDFKHV'513(OHQJWKDVVKRZQLQILJXUH)XUWKHU LQFUHDVHLQWKHWUDQVPLVVLRQOLQHOHQJWKLVQRWDWDOODIIHFWLQJWKHUHDODQGLPDJLQDU\SDUWRILPSHGDQFH DQGKHQFHWKHUHLVQRVKLIWWKHUHDIWHULQUHVRQDQWIUHTXHQF\DVLQWKHLPSHGDQFHGLDJUDPV

DE

)LJXUH $QWHQQD SDUDPHWULF YDULDWLRQ :J PP /J PP 6: PP 6/ PP /V PP J PP :6 PP*6 PPK PPDQGࣅU

)LJXUHD,PDJLQDU\DQGE5HDOSDUWRILPSHGDQFHZLWKWUDQVPLVVLRQOLQHOHQJWKYDULDWLRQ:J PP/V PP6: PP J PP:6 PP*6 PPK PPDQGࣅU

)LJXUH 5HIOHFWLRQ DQG ,PSHGDQFH FKDUDFWHULVWLFV RI WKH DQWHQQD :J PP 6: PP /V PP J PP:6 PP*6 PPK PPDQGࣅU

(18)

7KH LPSHGDQFH PLVPDWFK RI WKH DQWHQQD GXH WR DQ\ IDEULFDWLRQ PLVDOLJQPHQWV FDQ EH HDVLO\

RYHUFRPHE\WXQLQJWKHUHDFWDQFHE\YDU\LQJWKHVLJQDOVWULSOHQJWK7KHYDULDWLRQRILPSHGDQFHZLWK UHVSHFWWRVLJQDOVWULSLVVKRZQLQILJXUH$VWKHVLJQDOVWULSOHQJWKLVUHGXFHGWKHLQGXFWLYHUHDFWDQFH SUHGRPLQDWHV ZLWK D FRUUHVSRQGLQJ FKDQJH LQ WKH UHDO SDUW 0RUHRYHU LW LV IRXQG WKDW WKH VLJQDO VWULS OHQJWKLVRQO\DIIHFWLQJWKHLPSHGDQFHPDWFKLQJZLWKRXWFKDQJHLQWKHUHVRQDQWIUHTXHQF\

'LIIHUHQW DQWHQQDV DUH GHYHORSHG RQ VXEVWUDWH RI GLHOHFWULF FRQVWDQW DQG WKLFNQHVV PP IRU GLIIHUHQWDSSOLFDWLRQEDQGVDQGWKHLUFRUUHVSRQGLQJSDUDPHWHUVDUHJLYHQLQWDEOH

)UHTXHQF\EDQGV /V /J :J *V :V

0+] PP PP

*+] PP PP

*+] PP PP

*+] PP PP

$Q DQWHQQD UHVRQDWLQJ DW *+] IRU VHQVRU PHDVXUHPHQWV ZDV VXUURXQGHG ZLWK D PHGLXP RI YDU\LQJ GLHOHFWULF FRQVWDQW VWDUWLQJ IURP DLU WR ZDWHU DQG LWV VHQVLWLYLW\ LV DQDO\]HG 7KH UHVRQDQFHIUHTXHQF\VKLIWVZLWKWKHFKDQJHLQGLHOHFWULFFRQVWDQWEXWWKHSHUFHQWDJHVKLIWGHFUHDVHVDV GLHOHFWULF FRQVWDQW LQFUHDVHV DV VKRZQ LQ ILJXUH 7KH LPSHGDQFH PDWFKLQJ RI WKH DQWHQQD LV QRW GHJUDGLQJ ZKLFK LV HVVHQWLDO IRU VHQVRU DSSOLFDWLRQV 7KXV E\ PHDVXULQJ WKH VKLIW LQ IUHTXHQF\ WKH GLHOHFWULFFRQVWDQWFDQEHFDOFXODWHG7KLVLVKLJKO\XVHIXOIRUWKHGLHOHFWULFFRQVWDQWPHDVXUHPHQWRI EXONOLTXLGPDWHULDOVE\VLPSO\LQVHUWLQJLQWKHOLTXLG7KHUHODWLRQVKLSEHWZHHQWKHUHVRQDQWIUHTXHQF\

)UDQGGLHOHFWULFFRQVWDQWİULVFDOFXODWHGDQGDQO\VHG

İU İUFįF

:KHUHİUF ()U

įFUFUFUFUF(

7KH&RHIILFLHQWRI'HWHUPLQDWLRQIRUHTQDQGDUHDQGUHVSHFWLYHO\

7RXQGHUVWDQGWKHUHVRQDQWEHKDYLRUWKHFXUUHQWGLVWULEXWLRQ RIDQWHQQDLVDQDO\]HG,WLVIRXQGWKDW WKHFXUUHQWGLVWULEXWLRQRI&3:WUDQVPLVVLRQOLQHVKRZQLQILJXUHDLVPRGLILHGDVLQILJXUHEZLWK WKHSDUDVLWLF'513(HOHPHQW7KHRGGPRGHGLVWULEXWLRQRI&3:WUDQVPLVVLRQOLQHVUHPDLQVDVVXFK EXWWKHUHLVDFRQWLQXRXVYHUWLFDOYDULDWLRQRQWKHGLUHFWLRQRIFXUUHQWDORQJWKHODWHUDOJURXQGSODQHVDV FOHDUO\ LQGLFDWHG LQ WKH ILJXUH %XW WKH GLUHFWLRQ RI FXUUHQW DORQJ WKH HGJHV UHPDLQV DV VXFK ZLWK D YDULDWLRQLQLQWHQVLW\7KHFXUUHQWGLVWULEXWLRQRI'513(HOHPHQWDORQHLVVKRZQLQILJXUHF7KHUHLV DKDOIZDYHYDULDWLRQRQERWKRIWKHODWHUDOJURXQGSODQHVZLWKDQRYHUDOOIXOOZDYHYDULDWLRQRIȜJ

)LJXUH )UHTXHQF\ VHQVLWLYLW\ ZLWK UHVSHFW WR WKH GLHOHFWULF FRQVWDQW RI VXUURXQGLQJ PHGLXP:J PP /J PP 6: PP J PP /V PP :6 PP

*6 PPDQGK PP

7DEOH$QWHQQDSDUDPHWHUVIRUGLIIHUHQWDSSOLFDWLRQEDQGV

)LJXUH 6PLWKFKDUWVKRZLQJ,PSHGDQFH YDULDWLRQ ZLWK VLJQDO VWULS OHQJWK :J PP /J PP 6: PP J PP /V PP :6 PP *6 PP K PP DQG

ࣅU

(19)

D E F

6LQFH/V /J :J 6/DQG:V *VIRUDȍ&3:WUDQVPLVVLRQOLQHWKHUHDUHRQO\WZRSDUDPHWHUV

GHWHUPLQLQJWKHUHVRQDQFHRIWKHDQWHQQDDQGLVFRQYHQLHQWIRUWKHGHVLJQHUV)RUWKHSURSRVHGDQWHQQD UHVRQDWLQJDW*+]WKHSDUDPHWHUVDUH/J ȜJDQG:V ȜJ7KHPHDVXUHGSRODUL]DWLRQDORQJ WKHERUHVLJKWRIWKHDQWHQQDLVLQ<GLUHFWLRQDQGWKHJDLQLVG%L

,9 &21&/86,21

&RPSDFW&RSODQDU:DYHJXLGHIHGDQWHQQDZLWK'LVWULEXWHG5HDFWLYH1HDUILHOG3DUDVLWLF(OHPHQW '513(DVDQHDUILHOGVHQVRULVSUHVHQWHG7KH'513(WRJHWKHUZLWK&3:WUDQVPLVVLRQOLQHDFWVDV WKHUDGLDWLQJHOHPHQW7KHZLGWKJDSDQGOHQJWKRI'513(DUHSULPDULO\DIIHFWLQJWKHLPSHGDQFHDQG UHVRQDQFH RI WKH VWUXFWXUH 7KH SURSRVHG DQWHQQD LV FRPSDFW KDYLQJ D VL]H UHGXFWLRQ RI ZKHQ FRPSDUHGWRD&3:IHGDQWHQQDIDEULFDWHGRQWKHVDPHVXEVWUDWH7KLV DQWHQQDLVKLJKO\VXLWDEOHIRU QHDUILHGSKDQWRPGLHOHFWULFPHDVXUHPHQWV

9 5()(5(1&(6

>@ 5LFKDUG : =LRONRZVNLDQG $\FDQ (UHQWRN ³0HWDPDWHULDO%DVHG (IILFLHQW (OHFWULFDOO\ 6PDOO $QWHQQDV´ ,((( 7UDQV $QWHQQDV 3URSDJ 9RO 1RSS-XO\

>@ 5LFKDUG:=LRONRZVNL³$QHIILFLHQW(OHFWULFDOO\6PDOO$QWHQQD'HVLJQHGIRU9+)DQG8+)DSSOLFDWLRQV´,((($QWHQQDVDQG:LUHOHVV3URSDJ /HWWHUV9ROSS

>@ 6%DFNDQG<-HH³&RPSDFWLQWHJUDWHGPRQRSROHDQWHQQDZLWK&3:IHGPHDQGHUUHVRQDWRUV´(OHFWURQ/HWW9RO1RSS-DQ

>@ 'HHSWL 'DV .ULVKQD 0 *RSLNULVKQD &. $QDQGDQ 30RKDQDQ DQG .9DVXGHYDQ ³&3:)HG .RFK )UHDFWDO 6ORW $QWHQQD IRU :/$1:L0$;

$SSOLFDWLRQV´,((($QWHQQDVDQG:LUHOHVV3URSDJ/HWWHUV9ROSS

>@ 65%HVW³7KHUDGLDWLRQSURSHUWLHVRIHOHFWULFDOO\VPDOOIROGHGVSKHULFDOKHOL[DQWHQQDV´,(((7UDQV$QWHQQDV3URSDJYROQRSS

$SU

>@ *RNKDQ0XPFX6DXUDEK*XSWD.XELOD\6HUWHO-RKQ/9RODNLV³6PDOO:LGHEDQG'RXEOH/RRS$QWHQQDVXVLQJ/XPSHG,QGXFWRUVDQG&RXSOLQJ

&DSDFLWRUV´,((($QWHQQDVDQG:LUHOHVV3URSDJ/HWWHUV9ROSS

>@ $\FDQ(UHQWRNDQG5LFKDUG:=LRONRZVNL³0HWDPDWHULDO,QVSLUHG(IILFLHQW(OHFWULFDOO\6PDOO$QWHQQDV´ ,(((7UDQV$QWHQQDV3URSDJYRO QRSS0DU

>@ 0DUFR $ $QWRQLDGHV DQG *HRUJH 9 (OHIWKHULDGHV ³ $ )ROGHG0RQRSROH 0RGHO IRU (OHFWULFDOO\ 6PDOO 15,7/ 0HWDPDWHULDO $QWHQQDV´ ,(((

$QWHQQDVDQG:LUHOHVV3URSDJ/HWWHUV9ROSS

>@ $/%RUMD $ %HOHQJXHU - &DVFRQ + (VWHEDQ DQG 9( %RULD ³:LGHEDQG 3DVVEDQG 7UDQVPLVVLRQ /LQH %DVHG RQ 0HWDPDWHULDO,QVSLUHG &3:

%DODQFHG&HOOV´,((($QWHQQDVDQG:LUHOHVV3URSDJ/HWWHUV9ROSS

>@ :HL 7RQJ =KLUXQ +X 6&KXD 3KLOLS ' &XUWLV $QGUHZ $3 *LSVRQDQG 0RKDPHG0LVVRXV ³/HIW+DQGHG 0HWDPDWHULOD &RSODQDU :DYHJXLGH

&RPSRQHQWVDQG&LUFXLWVLQ*D$V00,&7HFKQRORJ\´,(((7UDQV0LFURZDYH7KHRU\7HFK9RO1RSS$XJXVW

>@ -=KXDQG*9(OHIWKHULDGHVµ'XDOEDQGPHWDPDWHULDOLQVSLUHGVPDOOPRQRSROHDQWHQQDIRU:L)LDSSOLFDWLRQV¶(OHFWURQ/HWW9RO1RSS RFW

>@ +DLWDR&KHQJ6LDPDN(EDGLDQG;XQ*RQJµ$/RZ3URILOH:LUHOHVV3DVVLYH7HPSHUDWXUH6HQVRU8VLQJ5HVRQDWRU$QWHQQD,QWHJUDWLRQ8SWR

&¶,((($QWHQQDVDQG:LUHOHVV3URSDJ/HWWHUV9ROSS

)LJXUH &XUUHQW GLVWULEXWLRQ RI D &3: WUDQVPLVVLRQ OLQH ZLWKRXW '513( E &3: WUDQVPLVVLRQ OLQH :LWK '513( F '513(VWUXFWXUH:J PP/J PP6: PP6/ PPJ PP:6 PP*6 PPK PPDQGࣅU

(20)

%HDP6ZLWFKLQJ$QWHQQDDW*+]IRU:LUHOHVV%RG\$UHD1HWZRUN$SSOLFDWLRQ

$QXSDP5&KDQGUDQ6HQDQ0RUULVRQ5XLIHQJ=KDQJ1LFN7LPPRQV -LP0RUULVRQ :L6$5/DE/HWWHUNHQQ\,QVWLWXWHRI7HFKQRORJ\/HWWHUNHQQ\,UHODQG

(PDLO$QXSDP5DPDFKDQGUDQ#O\LWLH

Abstract:In this paper, a microstrip patch antenna with parasitic arms for controlling the direction of the radiated beam for wireless body area network is presented. The realized gain of the antenna in the off-body mode is 1.93 dB and that in the on- body mode is 1.4 dB. The operating frequency band centered at 2.45 GHz frequency remains unaltered with a bandwidth of 80 MHz irrespective of the switching states.

,QWURGXFWLRQ:LUHOHVV%RG\$UHD1HWZRUN:%$1LVDQLQWHUFRQQHFWLRQRIZLUHOHVVOLQNV EHWZHHQ VHQVRU QRGHV ORFDWHG DW GLIIHUHQW ORFDWLRQV RQ WKH KXPDQ ERG\ ,Q :%$1 WKHUH H[LVWV WZR PRGHV RI FRPPXQLFDWLRQV RQERG\ PRGH DQG RIIERG\ PRGH 2QERG\ PRGH UHIHUVWRWKHFRPPXQLFDWLRQVEHWZHHQGLIIHUHQWVHQVRUQRGHVORFDWHGDWGLIIHUHQWDUHDVRQWKH ERG\:KHUHDVLQWKH FDVHRIRIIERG\PRGHWKHFRPPXQLFDWLRQH[LVWEHWZHHQERG\ ZRUQ GHYLFHVDQGDUHPRWHEDVHVWDWLRQRUDPRELOHGHYLFHWKURXJKZKLFKWKHGDWDUHFRUGHGFDQEH WUDQVPLWWHGWRDPHGLFDOSUDFWLWLRQHUIRUDQDO\VLVRUFDQEHXVHG WR WUDFNGRZQWKHVROGLHUV KHDOWKFRQGLWLRQVLQDEDWWOHILHOG)LJVKRZVWKHWZRGLIIHUHQWPRGHVRIFRPPXQLFDWLRQVLQ :%$1

)LJ0RGHRISURSDJDWLRQIRU:%$1

,Q RUGHU WR VZLWFK WKH VLJQDO IURP RQERG\ PRGH WR RII ERG\ PRGH WKHUH LV D QHHG IRU DQ DQWHQQDVV\VWHPWKDWLVFDSDEOHRIVZLWFKLQJWKHVLJQDOIURPRQERG\PRGHWRRIIERG\PRGH RI FRPPXQLFDWLRQ 7KH IUHTXHQF\ RI RSHUDWLRQ RI WKH DQWHQQD VKRXOG EH LQ WKH GHVLJQDWHG ,60EDQGLUUHVSHFWLYHRIWKHGLUHFWLRQWKHEHDPLVVZLWFKHG,QUHFHQW\HDUVWKHUHKDVEHHQD VLJQLILFDQWDPRXQWRIZRUNSXEOLVKHGLQWKHOLWHUDWXUHUHODWLQJWR:%$1%XWWKHUHKDVEHHQ RQO\YHU\IHZSDSHUVWKDWDUHDYDLODEOHLQWKHOLWHUDWXUHUHJDUGLQJDVHQVRUQRGHWKDWLVFDSDEOH RI VZLWFKLQJ WKH EHDP IURP RQERG\ PRGH WR RIIERG\ PRGH 6RPHRI WKH UHFHQW UHVHDUFK ZRUNV SXEOLVKHG LQ WKLV DUHD LQFOXGHV VWDFNHG SDWFK DQWHQQDV ZLWK VZLWFKDEOH SURSDJDWLQJ PRGHIRU8+)ERG\ FHQWULFFRPPXQLFDWLRQV>@7KHSDSHUGHVFULEHVWKHXVHRIWKHORZHU SDWFK DQWHQQD WR JHQHUDWH PRQRSROH OLNH UDGLDWLRQ SDWWHUQ IRU WKH XVH LQ RQERG\ PRGH RI FRPPXQLFDWLRQZKLOHWKHXSSHUSDWFKUDGLDWHVLQWKHERUHVLJKWGLUHFWLRQWKDWVHUYHVIRUWKH RIIERG\FRPPXQLFDWLRQPRGH$PLFURVWULSSDWFKDQWHQQDEDVHGRQWH[WLOHPDWHULDOLVXVHG

2QERG\PRGH

2IIERG\PRGH

$QWHQQD

+XPDQ7RUVR +HDG

(21)

WR UHDOL]H D VZLWFKDEOH RQRIIERG\ FRPPXQLFDWLRQ V\VWHP ZLWK SLQ GLRGHV LQ >@ $ GXDO IHHG GXDO UDGLDWLRQ SDWWHUQ GLHOHFWULF UHVRQDWRU DQWHQQD IRU %$1 DSSOLFDWLRQV KDV EHHQ SURSRVHGLQ>@ZKHUHRQHRIWKHWZRIHHGVLVH[FLWHGDWDWLPHWRVZLWFKWKHEHDPSDWWHUQ,Q WKLVSDSHUZHLQWURGXFHDQRYHOSDWWHUQUHFRQILJXUDEOHPLFURVWULSSDWFKDQWHQQDVXLWDEOHIRU ZLUHOHVVERG\DUHDQHWZRUNDSSOLFDWLRQ

$QWHQQD'HVLJQ

*HRPHWU\RIWKHSURSRVHGDQWHQQDLVVKRZQLQILJ)RUVWXG\LQJWKHHIIHFWRIWKHDQWHQQD ZKHQLQFORVHSUR[LPLW\WRDKXPDQPXVFOHWLVVXHDW*+]WKHDQWHQQDLVSODFHGPP DERYH D FXELFDO F\OLQGULFDO SKDQWRP >@ 7KH SHUPLWWLYLW\ DQG FRQGXFWLYLW\ XVHG IRU WKH QXPHULFDOPXVFOHWLVVXHSKDQWRPPRGHODW*+]ZHUHİU ı 6P

7KHLQVHWIHGPLFURVWULSSDWFKDQWHQQDVZLWKRQSKDQWRPRSWLPL]HGGLPHQVLRQVLVXVHGDVWKH UDGLDWLQJ HOHPHQW 7ZR SDUDVLWLF HOHPHQWV ZLWK VZLWFKHV 6:/6:/ 6:/ DQG 6:5 6:5 6:5 DUH SODFHG DW D VSHFLILF GLVWDQFH IURP WKH UDGLDWLQJ HOHPHQW)RU SURRI RI FRQFHSW FRSSHU VWULSV ZHUH XVHG LQVWHDG RQ VZLWFKHV ,Q WKH 21VWDWH WKH VZLWFKHV ZHUH UHSODFHG E\ D VKRUWLQJ VWULS DQG WKH 2)) VWDWHV ZHUH UHDOL]HG E\ RSHQ 6ZLWFKHV DUH FRQQHFWHGLQVXFKDZD\WKDWWKHEHDPFDQEHWLOWHGE\FRQWUROOLQJWKHLU212))VWDWHV+HUH WKHFRQFHSWLVWRFKDQJHWKHSDUDVLWLFDUPVDVUHIOHFWRUDQGGLUHFWRUDOWHUQDWLYHO\WRDFKLHYH RQERG\DQGRIIERG\PRGHRIFRPPXQLFDWLRQV7KHPLFURVWULSSDWFKDQGSDUDVLWLFDUPVDUH SULQWHGRQWKHVDPHVLGHRID)5VXEVWUDWHRIGLHOHFWULFFRQVWDQWİU DQGWKLFNQHVV PP7KHGLPHQVLRQRIWKHJURXQGSODQHXQGHUQHDWKWKHSDWFKLVRSWLPL]HGDVPP;

PPIRUWKHVSHFLILFDSSOLFDWLRQ$OOWKHVLPXODWLRQVZHUHFDUULHGRXWXVLQJ&67PLFURZDYH VWXGLR

)LJ*HRPHWU\RIWKHDQWHQQDD7RSYLHZE6LGH9LHZ

PP PP

PP PP PP

PP

PP

PP PP

[

\ ]

PP PP

PP

3DWFK

*1'

D

E

6:/

6:/ 6:5

6:5

$UP

(22)

Free space

Frequency, GHz

2.0 2.2 2.4 2.6 2.8 3.0

S11, dB

-40 -30 -20 -10 0

SWL = SWR = OFF SWL = OFF, SWR = OFF SWL = ON, SWR = OFF

Free space

Frequency (GHz)

2.0 2.2 2.4 2.6 2.8 3.0

S11, dB

-40 -30 -20 -10 0

SWL = OFF, SWR = OFF SWL = OFF, SWR = ON SWL = ON, SWR = OFF

5HVXOWVDQG'LVFXVVLRQV

)LJDQG)LJVKRZVWKHVLPXODWHGDQGWKHPHDVXUHGUHIOHFWLRQFRHIILFLHQWUHVXOWVRIWKH DQWHQQDIRUWKUHHGLIIHUHQWFRQILJXUDWLRQVRIWKHVZLWFKLQJVWDWHV:KHQVZLWFKHV6:/6:/ 6:/DQG6:56:56:5DUHLQWKH2))VWDWHWKHDQWHQQDUDGLDWHVLQWKHERUHVLJKW GLUHFWLRQVXLWDEOHIRURIIERG\PRGHRIFRPPXQLFDWLRQV7KHFRUUHVSRQGLQJUDGLDWLRQSDWWHUQ IRU WKH RIIERG\ PRGH LQ IUHH VSDFH DQG RQSKDQWRP LV GHSLFWHG LQ )LJ D DQG D UHVSHFWLYHO\:KHQ6:/DQG6:/DUHLQWKH21VWDWHDQG6:5DQG6:5DUHLQWKH2)) VWDWHWKHFRUUHVSRQGLQJSDUDVLWLFDUPDFWVDVDUHIOHFWRUWLOWLQJWKHEHDPWR“GHJUHHVIURP WKHQRUPDOZKHQLQIUHHVSDFHDQG“GHJUHHVIURPWKHQRUPDOZKHQLQFORVHSUR[LPLW\WR WKH SKDQWRP PXVFOH WLVVXH 7KH FRUUHVSRQGLQJ UDGLDWLRQ SDWWHUQ SORW LQ IUHH VSDFH DQG RQ SKDQWRPLVVKRZQLQ)LJEDQGEUHVSHFWLYHO\ZKLFKPDNHVWKLVDQWHQQDVXLWDEOHIRU RQERG\PRGHRIFRPPXQLFDWLRQV6LPLODUO\ZKHQ6:/DQG6:/DUHLQWKH2))VWDWHDQG VZLWFKHV6:5DQG6:5DUHLQWKH21VWDWHWKHSDUDVLWLFDUPRQWKHULJKWDFWVDVDUHIOHFWRU DQGGLUHFWWKHEHDPDVVKRZQLQ)LJFZKHQLQIUHHVSDFHDQGDVLQ)LJFZKHQLQ FORVH SUR[LPLW\ WR WKH SKDQWRP ,Q DOO WKHVH VZLWFKLQJ VWDWHV WKH IUHTXHQF\ RI RSHUDWLRQ UHPDLQHGWKHVDPH7KHSURWRW\SHRIWKHSURSRVHGEHDPVZLWFKLQJDQWHQQDLVVKRZQLQDORQJ ZLWKWKHJUDSKLQ)LJD

)LJ6LPXODWHGUHIOHFWLRQFRHIILFLHQWRIWKHDQWHQQDIRUGLIIHUHQWVZLWFKLQJFRQGLWLRQV D)UHHVSDFH E2QSKDQWRP

)LJ0HDVXUHGUHIOHFWLRQFRHIILFLHQWRIWKHDQWHQQDIRUGLIIHUHQWVZLWFKLQJFRQGLWLRQV D)UHHVSDFH E2QSKDQWRP

On-phantom

Frequency, GHz

2.0 2.2 2.4 2.6 2.8 3.0

S11, dB

-40 -30 -20 -10 0

SWL = SWR = OFF SWL = OFF, SWR = ON SWL = ON, SWR = OFF

On-phantom

Frequency, GHz

2.0 2.2 2.4 2.6 2.8 3.0

S11,dB

-40 -30 -20 -10 0

SWL = OFF, SWR = OFF SWL = OFF, SWR = ON SWL =ON, SWR =OFF

D E

D E

(23)

)LJ)UHHVSDFHUDGLDWLRQSDWWHUQRIWKHDQWHQQD

)LJ2QSKDQWRPUDGLDWLRQSDWWHUQRIWKHDQWHQQD

&RQFOXVLRQ

$ SDWWHUQ UHFRQILJXUDEOH DQWHQQD DW *+] KDV EHHQ GHYHORSHG IRU ZLUHOHVV ERG\ DUHD QHWZRUN DSSOLFDWLRQV 7KH UHVRQDQFH IUHTXHQF\ RI WKH DQWHQQD UHPDLQV WKH VDPH IRU WKH GLIIHUHQW FRQILJXUDWLRQV RI WKH SDWWHUQ GHVSLWH EHLQJ LQ FORVH SUR[LPLW\ WR KXPDQ PXVFOH WLVVXH$“GHJUHHRIEHDPWLOWZDVDFKLHYHGIRUWKHDQWHQQDZKLOHRQSKDQWRP

$FNQRZOHGJHPHQW

7KHDXWKRUVZRXOGOLNHWRDFNQRZOHGJH(QWHUSULVH,UHODQGIRUWKHLUILQDQFLDOVXSSRUW

5HIHUHQFH

>@ :*6FDQORQDQG$5&KDQGUDQ³6WDFNHGSDWFKDQWHQQDZLWKVZLWFKDEOHSURSDJDWLQJ IRU 8+) ERG\ FHQWULF FRPPXQLFDWLRQV´ ,((( ,QWHUQDWLRQDO :RUNVKRS RQ $QWHQQD 7HFKQRORJ\L:$7SS

>@ +-/HH./)RUGDQG5-/DQJOH\³6ZLWFKDEOHRQRIIERG\FRPPXQLFDWLRQDW

*+]XVLQJWH[WLOHPLFURVWULSSDWFKDQWHQQDRQVWULSOLQH´,(7(OHFWURQLFV/HWWHUV9RO 1RSS

>@ $0)DL]7$OYHV%3RXVVRWDQG-0/DKHXUWH³'LYHUVLW\DQWHQQDFRPELQLQJVORW ORRS'5$IRU%$1DSSOLFDWLRQV´(OHFWURQLFV/HWWHUV9RO1R

>@ *$&RQZD\DQG:*6FDQORQ³$QWHQQDVIRU2YHU%RG\6XUIDFH&RPPXQLFDWLRQDW

*+]´,(((7UDQVDFWLRQVRQ$QWHQQDVDQG3URSDJDWLRQ9RO1R

D E F

D E F

(24)

Compact single shorted hexagonal microstrip patch antenna

K. P. Ray 1, Suchitra Majumdar2, S. S Kakatkar1, R.G Karandikar2

1SAMEER, IIT Campus, Powai, Mumbai - 400076, India

2K.J Somaiya COE, Vidyavihar, Mumbai - 400077, India E-mail: [email protected]

$EVWUDFW,QWKLVSDSHULWKDVEHHQVKRZQWKDWWKHUHVRQDQWIUHTXHQF\RID KH[DJRQDO SDWFK DQWHQQD FDQ EH ORZHUHG VLJQLILFDQWO\ E\ ORDGLQJ D VLQJOH VKRUWLQJSLQDWWKHHGJHRIPLFURVWULSSDWFKDQWHQQDOHDGLQJWRDUHPDUNDEOH UHGXFWLRQ LQ WKH VL]H RI WKH DQWHQQD DQG VDYLQJ LQ UHDO HVWDWH IRU D JLYHQ RSHUDWLQJ IUHTXHQF\ 6LPXODWHG DQG H[SHULPHQWDO UHVXOWV RI VXFK D +H[DJRQDO PLFURVWULS DQWHQQD DUH SUHVHQWHG &RPSDULVRQV RI WKH 6KRUWHG DQG FRQYHQWLRQDO +H[DJRQDO PLFURVWULS DQWHQQDV DUH DOVR SUHVHQWHG DQG GLVFXVVHG

Introduction: Emerging technology has paved the way for miniaturization of devices which in turn has led to the need for miniaturization of antennas suitable for such modern devices used in personal communication equipments. Compact antennas are also required for applications like missiles and other airborne applications where space is at a premium.

Shorting pin loaded microstrip antennas have recently gained much attention due to the increasing demand of compact antennas for personal communication equipment. It has been demonstrated that loading a rectangular, circular or triangular microstrip patch antenna with a shorting pin can effectively reduce the required patch size for a given operating frequency [l- 3].In the shorted patch technique, a radiating microstrip patch antenna is shorted by a shorting pin through ground via substrate material. This short circuit may be complete, by wrapping a copper strip around the edge of the antenna, or by placing a shorting post at an optimum location [2]. It is easier to use a shorting post as compared to wrapping a copper strip around the edge. It has been demonstrated that a smaller shorted microstrip antenna has the same resonance frequency as that of an unshorted but bigger microstrip antenna [3].The shorting posts or plate along the zero potential line, perpendicular to the feed axis, leave the field distribution unperturbed [4].

Compact shorted variations of circular and triangular microstrip antennas have already been reported in the literature [5, 6]. A shorted Hexagonal microstrip antenna (HMSA) has however, not been investigated as thoroughly as shorted patch antennas of other shapes. A Hexagonal Microstrip Antenna (HMSA) has the advantage that its shape/area can be closely approximated to that of a circle and it can be packed closely together in an array.

Also, straight edge of HMSA configuration helps in parasitic coupling with other similar patches for bandwidth improvement which would have become difficult with curved edges of circular microstrip patch antenna. Recently, HMSA and its variations have been reported in the literature and a resonance frequency formulation has been proposed to match with the experimental results [7 – 12].

A single shorted HMSA has been designed and fabricated and the simulated and measured results are presented in the next section. The conventional HMSA has also been designed and fabricated and the results for these variations of HMSA have been compared. In

(25)

[14], a compact configuration of Hexagonal microstrip antenna using multi shorting has been proposed. The area has been shown to reduce by a factor of four for the quarter patch using multi shorting techniques, while maintaining approximately the same resonance frequency as that of conventional HMSA. In this paper, a single shorting pin has been used to reduce the resonance frequency of a given size of hexagonal microstrip patch antenna. The reduction in area for an antenna designed at a given operating frequency using this technique is seen to be almost 10 times as compared to a conventional HMSA.

Antenna Configuration:

Fig1a Conventional HMSA Fig1b Single Shorted HMSA

Fig.1 Geometrical Configuration. a) Conventional HMSA b) single shorted HMSA Antenna Parameters: Substrate Dimension 75 mm x 75 mm x 1.59 mm, L =40 mm, h=1.59mm, a1=17.5mm, a2=31mm, a3=5mm, d1=1.4mm, d2=1mm where d2 is shorting pin location with respect to feed point., İr=4.3, loss tangent tanį=0.02

Fig 2a. Photograph of HMSA Fig 2b. Photograph of S-HMSA

Fig.2 Photographs of fabricated antennas a) HMSA b) single shorted HMSA

The geometry of the proposed conventional Hexagonal Microstrip patch antenna and Single shorted Hexagonal Microstrip patch antenna is shown in Fig.1a and Fig 1b respectively. The antennas are etched on a substrate of height h having dielectric constant İr

and loss tangent tan į. The side length of the regular hexagon is shown as L in Fig.1a. The antenna is fed at a distance a1 from the centre of the hexagon for the unshorted case while the feed distance is a2 for the S-HMSA. Theshorted HMSA is shorted to ground at a distance a3

from the feed location. The diameter of feeding pin is taken as d1 while that of the shorting post is taken as d2.

The antenna was extensively studied through simulations and optimised for maximum reduction in resonant frequency. It was observed that maximum reduction is achieved when a

a1

Ăϯ

Ś Ś

L L

ĚϭĚϮ d1

a2

İr İr

(26)

single shorting pin is located along the edge of the microstrip patch antenna. The antenna parameters for the final fabricated HMSA and S-HMSA are given in Fig.1a and Fig 1b respectively. The antenna is mounted on FR4 substrate which has a dielectric constant of 4.3 and fed using a coaxial probe. Both Hexagonal Microstrip Patch Antenna and Shorted Hexagonal Microstrip Patch Antenna have the same physical dimension. A conventional HMSA and shorted antenna was fabricated based on the optimised simulated configuration.

A photograph of the fabricated antenna is shown in Fig 2a. In the fabricated antenna, the shorting pin is located at the centre of one of the edges as shown in 2b.

Results and Discussion: The simulated and experimental results for the return loss of conventional and single shorted hexagonal microstrip patch antenna are shown in fig 3a and 3b, respectively. As seen from Fig.3a, a hexagonal microstrip patch antenna of 40mm side length resonates at 1.095GHz. The corresponding return loss plot for a shorted HMSA is shown in Fig.3b. It may be seen from the figures that after loading with a single shorting pin, the Hexagonal microstrip patch antenna resonance frequency reduces to 331MHz. The Shorted Hexagonal Microstrip patch antenna is thus seen to achieve significant reduction in resonance frequency as seen from fig 3a and 3b. Measured and simulated results are seen to agree well from Fig.3a and 3b. Thus, 69% reduction of resonant frequency is achieved by locating a single shorting pin at one of the edges of hexagonal microstrip patch antenna. This reduction in resonant frequency can be attributed to the increase in current path length due to loading of single shorting post in microstrip patch antenna. Current path distributions of both hexagonal microstrip patch antenna and Single shorted Hexagonal Microstrip Patch antenna are shown in fig 4a and 4b, respectively. Further it has been observed through simulation that same resonance frequency of 331 MHz is achieved for a conventional hexagonal microstrip patch antenna of side length 14cm as shown in Fig.5. This shows that using single shorting technique the area required for antenna has been reduced from 509 cm2 to 41 cm2 for the same resonant frequency of 331 MHz. This amounts to a remarkable reduction of 91.84% in area leading to a highly compact, lightweight antenna and making more space available for other subsystems and electronics on board.

Fig.3a Return loss of conventional HMSA Fig.3b Return loss of single shorted HMSA

Fig.3 Simulated and measured Return loss for a) conventional and b) single shorted HMSA

Fig 4a Current distribution of HMSA. Fig 4b Current distribution of S-HMSA Fig.4 Current distribution of conventional and single shorted HMSA (L= 4cm)

(27)

Fig 5. VSWR of HMSA of side length 14cm.

Conclusion

A hexagonal microstrip patch antenna with a single shorting pin at the edge was designed to realize significant reduction in the resonance frequency leading to more than 90% reduction in the size of the antenna and an extremely compact, lightweight design at the desired frequency. More than 69% reduction in resonant frequency was achieved. Simulated and measured results were shown to be in good agreement with each other. This antenna is useful in applications like mobile handsets, missiles, aircrafts, and other compact systems having severe space constraints and where size and weight are of major concern.

References

[1] WATERHOUSE, R.: 'Small microstrip patch antenna', Electron. Lett.,1995, 31, (8), pp.

604-605

[2] G. Kumar and K. P. Ray, Broadband microstrip antenna, Artech House, USA, 2003 [3] K. Hirasawa and M. Haneishi, Analysis, design, and measurement of small and low-

profile antennas, Artech House, Boston, 1992.

[4] M. Sanad, Effect of shorting posts on short circuit microstrip antennas, IEEE Antenna Propagat. Symp., 1994, pp. 794-797.

[5] S. K. Satpathy, K. P. Ray, and G. Kumar, Compact shorted variations of circular microstrip antenna, Electron Lett 34(1998), 137-138.

[6] S. K. Satpathy, K. P. Ray, and G. Kumar, Compact shorted variations of triangular microstrip antenna, Electron Lett 34(1998), 709-711.

[7] I. J. Bahl, and P. Bhartia, Microstrip Antennas, Artech House, Dedham, 1980.

[8] K. S. Arvind and J.R. Wolfgang, Spectral domain analysis of a Hexagonal microstrip resonator, IEEE Trans. Microwave Theory and Tech 30 (1982), 825-828.

[9] K. P. Ray, M. D. Pandey, S. Krishnan, Determination of resonance frequency of hexagonal and half-hexagonal microstrip antenna, Microwave Opt Technol Lett 49(2007), 2876-2879.

[10] K. P. Ray and M. D. Pandey, Resonance frequency of hexagonal and half hexagonal microstrip antennas, Microwave Opt Technol Lett 51(2009), 448-452.

[11] K. P. Ray, M. D. Pandey and A. Deshmukh, Broadband gap-coupled half hexagonal microstrip antennas, Microwave Opt Technol Lett 50 (2008), 271-275.

[12] K. P. Ray, M. D. Pandey,R. Rashmiand S.P. Duttagupta, “Compact configurations of hexagonal microstrip antennas”, Microwave and Optical Technology Letters, Issue Volume 55, Issue 3, pages 604–608, March 2013

(28)

%URDGEDQGRIIVHW&3:)HG6TXDUH6ORW$QWHQQD

$PLW$'HVKPXNK$PH\D$.DGDP6XGHVK$JUDZDODQG.35D\

'-6DQJKDYL&ROOHJHRI(QJLQHHULQJ9LOH3DUOH0XPEDL (PDLODPLWGHVKPXNK#UHGLIIPDLOFRP

5)06'LYLVLRQ6$0((5,,7&DPSXV0XPEDL (PDLONSUD\#UHGLIIPDLOFRP

Abstract:A new Coplanar Waveguide fed square slot rectangular microstrip antenna for broader bandwidth is proposed. An impedance bandwidth of more than 82% in 3000 MHz frequency band which covers Wi-MAX and WLAN bands is obtained. The proposed antenna shows broadside radiation pattern over the bandwidth with gain of 5.6dBi.

,QWURGXFWLRQ7KHLQWHUHVWRIXVLQJ&RSODQDU:DYHJXLGH&3:IHGIRUPLFURVWULSDQWHQQDV 06$ KDV EHHQ LQFUHDVLQJ RYHU LQ UHFHQW \HDUV >@ 7KH &3: IHG 06$V KDYH PDQ\

DWWUDFWLYHIHDWXUHVOLNHORZUDGLDWLRQORVVOHVVGLVSHUVLRQHDVHRILQWHJUDWLRQZLWKPRQROLWKLF PLFURZDYH LQWHJUDWHG FLUFXLWV 00,&V 7KH VLQJOH OD\HU VXEVWUDWH LV XVHG ZKLFK HQDEOHV LQWHJUDWLRQZLWK DFWLYH DQGSDVVLYH GHYLFHV2QHRIWKHPDLQLVVXHVZLWK &3: IHGVORWDQ WHQQDV LV WR SURYLGH DQ HDV\ LPSHGDQFH PDWFKLQJ WR WKH &3: OLQH ,Q RUGHU WR REWDLQ EURDGEDQG&3:IHGVORWDQWHQQDVVHYHUDOLPSHGDQFHWXQLQJWHFKQLTXHVKDYHEHHQUHSRUWHG LQWKHOLWHUDWXUHOLNHFKDQJHRIVORWGLPHQVLRQVLQERZWLHVORWV>±@DZLGHUHFWDQJXODU VORW>@FRXSOLQJPHFKDQLVPLQFOXGLQJLQGXFWLYHO\FRXSOHGVORW>@GLHOHFWULFUHVRQDWRU FRXSOLQJ >@ DQG RWKHU WHFKQLTXHV VXFK DV KDUPRQLF FRQWURO XVHG E\ SKRWRQLF EDQGJDS 3%*>@+RZHYHUEDQGZLGWKUHDOL]LQJ&3:IHGVORWDQWHQQDVLVJHQHUDOO\OHVVWKDQ ,QWKLVSDSHUDQHZWHFKQLTXHKDVEHHQHPSOR\HGWRLQFUHDVHWKHLPSHGDQFHEDQGZLGWKRIWKH

&3:IHGVORWDQWHQQDZKLFKXVHVWKHFRXSOLQJEHWZHHQWKH&3:IHHGOLQHDQGWKHVTXDUH VORW WR IDFLOLWDWH WKH LPSHGDQFH PDWFKLQJ RI WKH DQWHQQD DQG UHGXFH WKH FURVVSRODUL]DWLRQ OHYHO 7KHVLPXODWLRQDQGH[SHULPHQWDOUHVXOWVRIWKHSURSRVHGDQWHQQDVKRZWKHLPSHGDQFH EDQGZLGWK %: RI PRUH WKDQ DW WKH FHQWHU IUHTXHQF\ RI DURXQG 0+] WKHUHE\

FRYHULQJ :L0$; DQG :/$1 IUHTXHQF\ EDQGV 7KH DQWHQQD ZDV ILUVW VLPXODWHG DQG RSWLPL]HG XVLQJ ,(' VRIWZDUH IROORZHG E\ H[SHULPHQWDO YHULILFDWLRQV >@ 7KH SDWFK ZDV IDEULFDWHG RQ )5 VXEVWUDWH DQG WKH PHDVXUHPHQW ZDV FDUULHG RXW XVLQJ 5 6 9HFWRU QHWZRUNDQDO\]HU=9+7KHUDGLDWLRQDQGJDLQSURSHUWLHVZHUHPHDVXUHGXVLQJ5 65) VRXUFH DQG VSHFWUXP DQDO\]HU LQ WKH PLQLPXP UHIOHFWLRQ VXUURXQGLQJV ZLWK UHTXLUHG PLQLPXPIDUILHOGGLVWDQFHEHWZHHQUHIHUHQFHDQWHQQDDQGDQWHQQDXQGHUWHVW

$QWHQQD'HVLJQ

7KHJHRPHWU\RIWKHUHSRUWHG&3:IHGVORWDQWHQQDLVVKRZQLQ)LJD7KHSULQWHGVTXDUH UDGLDWLQJVORWKDVDVLGHOHQJWKRI/DQGDZLGWKRI*$Ÿ&3:KDVDZLGWK:IDQGDJDS RIVSDFLQJgEHWZHHQWKHFRQQHFWLQJVWULSDQGWKHFRSODQDUJURXQGSODQH7KHWXQLQJVWXELV FRQQHFWHGWRWKHHQGRI&3:IHHGOLQH,QWKLVGHVLJQWKHGLPHQVLRQVDUHFKRVHQWREH*

PP/ PP:I PPDQGJ PP7KHUHWXUQORVVDQGUHVRQDQFHFXUYHRIWKH UHSRUWHG VWUXFWXUH LV VKRZQ LV )LJ E DQG F UHVSHFWLYHO\ 7KH 96:5 ” %: IRU WKH UHSRUWHGFRQILJXUDWLRQZDVIRXQGWREH*+]DWFHQWHUIUHTXHQF\RI*+]ZKLFKJLYHV WRWDOEDQGZLGWKRI>@$OVRFXUUHQWGLVWULEXWLRQDWWKHUHVRQDQWPRGHVLVVKRZQLQ)LJ D±G7KHVXUIDFHFXUUHQWVVKRZKDOIZDYHDQGZDYHOHQJWKYDULDWLRQVDORQJWKHSDWFKDQG RXWHU VTXDUH VORW GLPHQVLRQV ZKLFK DUH GXH WR IXQGDPHQWDO DQG VHFRQG RUGHU PRGHV 7R XQGHUVWDQGWKHIXQFWLRQLQJRIWKLVDQWHQQDDQGWKHHIIHFWRIVWXEDQDQDO\VLVRIWKLVDQWHQQD ZDV FDUULHG RXW E\ UHPRYLQJ WXQLQJ VWXEV SODFHG WRZDUGV WKH FRUQHU RI WKH VTXDUH VORW DV VKRZQ LQ )LJ D 7KH UHWXUQ ORVV DQG UHVRQDQFH FXUYH SORW RI WKLV PRGLILHG VWUXFWXUH LV

(29)

VKRZQ LQ )LJ E DQG F UHVSHFWLYHO\ $V VHHQ IURP )LJ E WKH FKDQJH LQ %: LV QRW VLJQLILFDQW)XUWKHUD&3:IHGVLPSOH506$ZLWKRIIVHWIHHGLVLQYHVWLJDWHG7KHJHRPHWU\

RI WKH DQWHQQD LV VKRZQ LQ )LJ D 7KH SURSRVHG DQWHQQD ZDV IDEULFDWHG RQ DQ )5 VXEVWUDWHZLWKWKLFNQHVVKRIPPDQGUHODWLYHO\SHUPLWWLYLW\İURIDVVKRZQLQILJ EDQGWHVWHG7KHSDUDPHWULFVWXG\IRUYDULDWLRQLQ&3:IHGOLQHSRVLWLRQRQWKHUHDOL]HG

%: ZDV FDUULHG RXW DQG RSWLPXP UHVXOW ZDV REWDLQHG IRU VWULS SRVLWLRQ RI PP IURP WKH FHQWHU

7KH HIIHFW RI RIIVHW IHHG RQ LPSHGDQFH LV VKRZQ LQ ILJF :LWK DQ RIIVHW IHHG ORFDWLRQDWPPWKHLPSHGDQFHLVEHORZȍIRUDZLGHUDQJHRIIUHTXHQFLHVLQGLFDWLQJD JRRGLPSHGDQFHPDWFK7KHVLPXODWHG%:ZDVIRXQGWREH*+]DWFHQWHUIUHTXHQF\RI

*+]DQGPHDVXUHG%:LV*+]7KHPHDVXUHPHQWZDVFDUULHGRXWWRYDOLGDWH WKH VLPXODWLRQ 7KH PHDVXUHG %: LV DV VKRZQ LQ ILJ D DQG E 7KH UHVRQDQFH FXUYH VKRZQ LQ ILJ D VKRZV H[FLWDWLRQ RI DGGLWLRQDO PRGHV DV FRPSDUHG WR WKH FHQWHU IHHG FRQILJXUDWLRQ ZKDW UHVXOWV LQ LQFUHDVHG %: 7KH UHVRQDQFH SORW RI &3: IHG VWXE ORDGHG VTXDUHVORW06$LQGLFDWHVDKLJKDQGYDU\LQJLPSHGDQFHLQGHVLUHGIUHTXHQF\UDQJHZKLOH WKDWRIRIIVHWIHG&3:IHG06$LVDOPRVWHTXDOWRȍRYHUZLGHIUHTXHQF\UDQJHLQGLFDWLQJ DJRRGPDWFK7KHDQWHQQDHIILFLHQF\SORWLVVKRZQLQILJE7KHDQWHQQDHIILFLHQF\LV DERXW LQ WKH ORZHU IUHTXHQF\ UDQJH ZKLFK GHFUHDVHV WR OHVV WKDQ WRZDUGV KLJKHU IUHTXHQFLHV VLQFH )5 VXEVWUDWH LV ORVV\ VXEVWUDWH 7KH FXUUHQW GLVWULEXWLRQ DW WKH UHVRQDQW PRGHVLVVKRZQLQ)LJD±G7KHPHDVXUHRIFRSRODUUDGLDWLRQSDWWHUQSORWVLQ\]DQG[

]SODQHVDW*+]*+]DQG*+]DUHVKRZQLQ)LJ7KHSDWWHUQUHPDLQVLQEURDGVLGH GLUHFWLRQRYHUPRVWRIWKH%:

&RQFOXVLRQV$QHZZLGHEDQG&3:IHGVTXDUHVORWFXW506$LVSURSRVHG8VLQJWKHRIIVHW IHHG ORFDWLRQ DQ LQFUHDVHG LQSXW LPSHGDQFH %: RI FHQWHU DW DURXQG *+] LV REWDLQHG7KHLQFUHDVHGDQWHQQD%:LVGXHWRWKHDGGLWLRQDOPRGHVLQWURGXFHGLQRIIVHWIHHG FRQILJXUDWLRQ7KHDQWHQQDJLYHVEURDGVLGHUDGLDWLRQSDWWHUQRYHUPRVWRIWKH%:

5HIHUHQFHV

>@ 3/&KLQ$=(OVKHUEHQLDQG&(6PLWK&KDUDFWHULVWLFVRI&RSODQDU%RZ7LH3DWFK

$QWHQQDV$QWHQQDVDQG3URSDJDWLRQ6RFLHW\,QWHUQDWLRQDO6\PSRVLXPYROSS

>@ 3/&KLQ $=(OVKHUEHQL DQG&(6PLWK$&RSODQDU:DYHJXLGH%RZ7LH$SHUWXUH

$QWHQQDV $QWHQQDV DQG 3URSDJDWLRQ 6RFLHW\ ,QWHUQDWLRQDO 6\PSRVLXP YRO SS

>@ ($ 6ROLPDQ 6 %UHKHOV 3 'HOPRWWH *$( 9RQGHQERVFK DQG ( %HJQH %RZWLH 6ORW$QWHQQD)HGE\&3:(OHFWURQ/HQYROSS

>@ 0 0LDR %/ 2RL DQG 36 .RRL %URDGEDQG &3:IHG :LGH 6ORW $QWHQQD 0LFURZDYH2SW7HFKQRO/HWWYROSS

>@ ($6ROLPDQ6%UHKHOV3'HOPRWWH*$( 9RQGHQERVFKDQG (%HJQH &3:IHG

&XVS$QWHQQD0LFURZDYH2SW7HFKQRO/HWWYROSS

>@ 66*DUFLDDQG--/DXULQ6WXG\RID&3:,QGXFWLYHO\&RXSOHG6ORW$QWHQQD,((

3URF0LFURZDYH$QWHQQDV3URSDJDWLRQYROSS

>@ 06 $O 6DODPHK <00 $QWDU DQG *X\ 6HJXOLQ &RSODQDU :DYHJXLGH)HG 6ORW

&RXSOHG 5HFWDQJXODU 'LHOHFWULF 5HVRQDWRU $QWHQQD ,((( 7UDQV $QWHQQDV 3URSDJDWLRQYROSS

>@ ;& &KDQJ DQG /7 :DQJ $ %URDGEDQG &3:)HG /RRS 6ORW $QWHQQD ZLWK +DUPRQLF&RQWURO,((($QWHQQDVDQG:LUHOHVV/HWWYROSS

>@ ,('=HODQGVRIWZDUH,QF)UHPRQW&$

>@ -< &KLRX -< 6]H DQG ./ :RQJ $ %URDGEDQG &3:IHG 6WULSV/RDGHG 6TXDUH

(30)

)LJD&3:IHGVWXEORDGHGVTXDUHVORW506$LWVEUHWXUQORVVDQGFUHVRQDQFHFXUYHSORWV

)LJ&XUUHQWGLVWULEXWLRQDWYDULRXVUHVRQDQWPRGHVDI *+]EI *+]FI *+]G I *+]IRUVWXEORDGHG&3:IHG506$

)LJD*HRPHWU\RI&3:IHG506$ZLWKRXWVWXEVLWVEUHWXUQORVVDQGFUHVRQDQFHFXUYHSORWV

)LJD*HRPHWU\RIRIIVHWIHG&3:IHG506$EIDEULFDWHGSURWRW\SHDQGFHIIHFWRIRIIVHWIHHGRQ UHVRQDQFHSORW

References

Related documents

A study by World Weather Attribution concluded that climate change made extreme rainfall events similar to those that led to the floods in Germany, Belgium, the Netherlands

Like many other countries in the region, Pakistan has contributed little to climate change, yet it is highly vulnerable to extreme events caused by global warming.. The

The floods match projections of the consequences of warming and climate scientists have linked the floods with climate change.. Annual precipitation (rain, snow, sleet and

For management of COVID-19, Ayurveda will adopt a multi-pronged approach based entirely on classical, time-tested and documented information in Ayurveda (Fig. 3)- (i)

The second proposed antenna is a frequency tunable microstrip triangular patch array which can be operated to generate both types of CP (RHCP &amp; LHCP) radiation and also be used

Small antenna at a particular resonant frequency can be made feasible with various design techniques in the microstrip patch antenna.. Recently with the use of metamaterials and

i After realizing that he had been outwitted once again, the dejected Governor goes home that night contemplating his next move. While on one hand, he worries about the

Employees, officers, labourers and farmer members of the Terna sugar factory were interviewed, discussed, situation observed, conclusions and remedial measures were drawn as..