• No results found

Digital solution of load-flow, optimal load-flow and static state estimation problems in ill-conditioned power systems

N/A
N/A
Protected

Academic year: 2022

Share "Digital solution of load-flow, optimal load-flow and static state estimation problems in ill-conditioned power systems"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

DEDICATED TO

M Y P A R E N TS & TE A C H E R S

(2)

DIGITAL SOLUTION OF LOAD-FLOW

OPTIMAL LOAD-FLOW AND. STATIC STATE ESTIMATION PHOBLEMS IN ILL-CONDITIONED POWEI! SYSTEMS

BY

G.S.S.S.K. DURGAPRASAD

THESIS SU B M ITTE D IN PARTIAL FULFILMENT OF THE RBQUIREMENTS FOR TH E AW ARD OF TH E DEGREE OF

DOCTOR OF PHILOSOPHY IN

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, DELHI

NOVEMBER 1980

(3)

CERTIFICATE

Th is i s to c e r t i f y that the th e s is e n t i t l e d , ’’D i g i t a l Solu­

t i o n of Load-flow Optimal L o a d -flo u and S t a t i c S ta te Estim ation Problems in I l l - c o n d i t i o n e d Power Systems", which is-'beihg, sub­

m itte d by Mr. G . S . S . S . K . Durga Prasad for the award o f the.,Degree o f Doctor o f Philosophy o f the In dian I n s t i t u t e of Technology, New D e l h i , i s a bonafide re co rd o f research work c a r r i e d out by him over the l a s t three years under my guidance and s u p e r v is io n .

The candidate has f u l f i l l e d the requirements o f a l l th8 r e g u la tio n s r e l a t i n g to the degree. The r e s u lt s obtained in the th e s is have not been submitted to any o th e r U n i v e r s i t y or I n s t i t u t e f o r the award o f a degree o r diplom a.

D r . Sa ra t C. T r i p a t n y y Professor

Department o f E l e c t r i c a l Engineering Indian I n s t i t u t e o f Technology

New D e l h i 110 016, INDIA

(4)

ACKNOWLEDGEMENTS

I am indebted to my s u p e r v i s o r , P rofessor S . C . T r i p a t h y , f o r suggesting t h i s problem and f o r h is v a lu a b le guidance . His keen i n t e r e s t in t h i s f i e l d has been a g re a t source o f encouragement.

I owe a debt o f g r a t it u d e f o r h is system atic o rg a n is a tio n o f the e n t i r e work and f o r his c r i t i c a l comments and u s e f u l suggestions i n the p re p a ra tio n of t h i s t h e s i s .

I am also indebted to P rofessor C . S . In d u lk a r f o r his v a lu a b le suggestions and guidance du rin g the course of t h i s t h e s i s .

I express my g ra te fu ln e s s to P r o f . l/.S. Rajamani, Head, Depart­

ment of E l e c t r i c a l Engineering f o r p r o v id in g the f a c i l i t i e s * I am a ls o g r a t e f u l to P r o f . P . S . Satsangi and S . S . Lamba f o r t h e i r v a lu a b le d iscu ssio ns and suggestions*

I would l i k e to thank D r . S . Iwamoto, Department of E l e c t r i ­ c a l E n g in e e rin g , Tokai U n i v e r s i t y ; Japan, f o r p r o v id in g me the 11 and 43 bus i l l - c o n d i t i o n e d t e s t systems da ta.

My thanks are due to P r o f . P .G » Reddy, Operations i n —charge, Computer C e n tre , and also to the o perating s t a f f o f the Centre f o r the help and f a c i l i t i e s provid ed to me.

I thank many of my fr ie n d s f o r t h e i r coop eration and encoura­

gement rendered at v a rio u s stages of my research work.

F i n a l l y I express my s in c e re thanks to M r. P*M. Padmanabhan Nambiar f o r the neat ty p in g and Mr. R. Kapoor fo r n e a tly drawing the. diagrams.

G . S . S . S . K . DURGAPRASAD

(5)

ABSTRACT

Th is th e s is presents a p p l ic a t i o n o f mathematician K .Ft .Brown's method to the s o l u t i o n o f l o a d -f l o w , optim al load- f l o w and s t a t i c s t a t e estim ation problems. The method is p a r t i c u l a r l y e f f e c t i v e

f o r s o lu t io n of i l l - c o n d i t i o n e d systems o f n o n lin e a r a lg e b ra ic e q u a tio n s . I t i s a v a r i a t i o n o f Newton's method in c o r p o ra t in g Gaussian e lim in a t io n in such a way t h a t the most recent informa­

t i o n i s always used at each step of the a lg o rith m , s i m i l a r to u/hat i s done in the G au ss-Se id el process. The i t e r a t i o n converges l o c a l l y and the convergence i s q u a d ra tic in n a tu re . A general d is c u s s io n o f i l l - c o n d i t i o n i n g o f a system o f a lg e b ra ic equations i s g iv e n . I t i s also shown by f i x e d - p o i n t form ulation th a t the proposed method f a l l s in the general category o f succe ssive approxi­

mation methods. D i g i t a l computer solutions by the proposed Brown's method are given fo r s e v e ra l i l l - c o n d i t i o n e d power systems for which the standard l o a d -f lo w methods f a i l e d to converge. Even i f much progress has been made in l o a d - f l o w a n a l y s i s , there are s it u a ­ t i o n s which cause d i f f i c u l t i e s in o b ta in in g s o lu tio n s w ith some o f the standard methods. Some o f the causes of i n s t a b i l i t y and d i v e r ­ gence in lo a d -f lo w s o l u t i o n methods are

( a ) the p o s i t io n o f the re fe r e n o e -s la c k bus, ( b ) the choice of a c ce le ra tio n f a c t o r s ,

( c ) the existence o f ne gative l i n e reactance,

i

(6)

ii

( d ) c e r t a in types of r a d i a l systems, and

( e ) a la r g e r a t i o of l o n g - t o - s h o r t l i n e reactance fo r l i n e s te rm in a tin g i n the same bus.

Networks having the above features are known as i l l - c o n d i ­ tio n e d systems and are described by a system of n o n lin e a r a lg e ­ b r a i c e q u atio n s. The s o o lu tio n s of these equations are ve ry s e n s it i v e to sm all changes in s p e c i f ie d parameters such as bus data* In o th e r words, sm all changes in parameter produce a la rg e change in the s o l u t i o n .

A new a lg o rith m i s presented in t h i s th e s is f o r the l o a d - flow s o l u t i o n of iJ , l - c o n d it io n e d power systems using B ro u »fi's method and the nodal admittance m a t r ix . In Brown's method, each equation i s expanded in approximate T a y l o r ' s s e r i e s j houower, the most recent in fo rm a tio n a v a il a b l e i s immediately used in the con­

s t r u c t i o n o f the next fu n c tio n argument, s i m i l a r t o the procedure i n the Gauss—S e id e l process f o r the s o l u t i o n of sets of n o n lin e a r e q u a tio n s . Th is c o n tra s ts s h a r p ly w ith Newton's method i n which a l l equations are tr e a te d s im u lta n e o u s ly . I t has been proved th a t Brown's method i s not e q u iv a le n t to Newton's method. D i g i t a l computer r e s u l t s o f the proposed l o a d -f l o w are presented

(7)

iii

f o r s e v e ra l i l , ^ c o n d i t i o n e d power systems, fo r which the standard l o a d -f l o w methods, namely, G a u s s -S e id e l, Newton's, F le tc h e r-P o w e ll and Fast Decoupled algorithm s f a i l e d to converge w ith usual f l a t s t a r t . Although the B ram eller and Denmead method works for i l l - c o n d itio n e d problems, i t shows poor convergence. A comparison o f t h i s method with the standard l o a d -f l o w methods i s also presented fo r the w e l l -c o n d it io n e d AEP 14, 30 and 57 bus systems.

The optim al r e a l power flow has been solved with approximate lo s s formulas by s e v e ra l a u th o rs. Approximate methods also e x is t f o r the optim al r e a c t iv e power flo w . R ecently, attempts have been made to so lve the optim al r e a l and r e a c t iv e power flow e x a c t l y . The general problem o f optimal l o a d -f l o w s u b je c t t o e q u a lity and i n e q u a l i t y c o n s tr a in ts were formulated by Dommel and Tinney using , the Lagrangian m u l t i p l i e r s method and Newton-Raphson l o a d -f l o w .

L a t e r , Sasson applie d the F le tc h e r-P o w e ll a lg o rith m to the s o lu ­ t i o n o f lo a d -f lo w and optimal l o a d -f l o w problems w ith Z a n g w il l 's f o r m u la t io n . However, these well-known methods f o r optimal lo a d - flow do not work fo r the i l l - c o n d i t i o n e d power systems. I t i s shown in t h i s th e s is th a t the a p p lic a t io n o f Brown's a lg o rith m to the s e t o f necessary c o n d itio n s fo r a minimum o f the s c a l a r o b je c tiv e

fu n c tio n s u b je c t to the e q u a lit y and i n e q u a l i t y c o n s tra in ts r e s u lt s i n fa s te r convergence to the s o l u t i o n o f the i l l - c o n d i t i o n e d power systems comparod to the other methods. D i g i t a l computer re s u lt s by the proposed Brown's optim al l o a d -f l o w a lg o rithm are presented f o r 13-bus i l l - c o n d i t i o n e d , 5 - and 2 5 - bus w e ll-c o n d it io n e d t e s t

(8)

iv

systems. Also the th e s is presents a comparative assessment o f con­

vergence c h a r a c t e r i s t i c s of a l l the th re e methods (Dommel and T i n n e y , Sasson, and Brown) fo r optim al lo a d -f lo w s o l u t i o n o f w e l l - co n d itio n e d powor systems. For the a p p l ic a t i o n o f Brown’ s method, th e optimal l o a d -f l o w problem form ulation i s such th a t no move

from one fe a s ib le s o l u t i o n to another i s to be made fo r achie­

v i n g the optim al s o l u t i o n u n lik n in Qommel and T i n n a y 's g ra d ie n t te ch n iq u e .

The s t a t i c s ta te e s tim atio n has also been solved by the pro­

posed Brown’s method. I t i s shown th a t the method converges fa s te r than the Gauss-Newton method and F le tc h e r-P o w e ll method fo r i l l - c o n d itio n e d systems. However, a l l these three methods are based on weighted le a s t square fo rm u la tio n , th a t i s , m in im iza tio n o f the sum o f squared r e s id u a ls (mismatches) o f bus i n j e c t i o n s and the l i n e flo w s .

(9)

CONTENTS

Page

A bs tra ct i

Chapter l i In tr o d u c t io n 1

1.1 Load-Flow

1

1.2 Optimal Load-Flow 3

1.3 S t a t i c S tate Estim ation 4

1.4 O u t lin e of the Thesis 4

Chapter I I ; Review of Load-Flow, Optimal Load-Flow 8

and S t a t i c S ta te Estim a tion Methods

2.1 Review o f Load-Flow Methods 8

2. 1. 1 Basic Load-Flow Equ a tio n s, Bus Types, 9 Mismatches and S o lu t io n Accuracy C r i t e r i a

2 . 1 . 2 Y -M a t r ix I t e r a t i v e Methods 1:3

2 . 1 . 3 Z -M a t r ix Methods 17

2 . 1 . 4 Newton Methods 21

2 . 1 . 5 Decoupled Methods 24

2 . 1 . 6 M inim iza tio n Methods 26

2 . 1 . 7 Load-Flaw S o lu t io n fo r I l l - c o n d i t i o n e d 28 Systems

2.2 Review o f Optimal Load Flow Methods 29

2. 2. 1 Optimal Load-Flow S o lu t io n fo r 33

I l l - c o n d i t i o n e d Systems

2.3 Review of S t a t i c S ta te Estim a tion 33 Methods

(10)

Page 2. 3. 1 Weighted Least Square S t a t i c S ta te 36

Estim ation

2 . 3 . 2 S ta te E stim a tio n Using F le tc h e r-P o w e ll 38 A lg o rithm

2 . 3 . 3 S t a t i c S ta te E stim a tio n fo r 40 I l l - c o n d i t i o n e d Systems

Chapter I l l s I l l - c o n d i t i o n e d Systems, Eigenvalue 42 A n a ly s is and K.M. Brawn’ s Method

3.1 I l l - c o n d i t i o n e d Systems 42

3 .2 Eigenvalue A n a ly s is and C o nd itio n Number 43

3. 3. 1 K»M. Brown’ s Method 46

3 . 3 . 2 Choice o f hR i n the Computer 52

Implementation

3 . 3 . 3 Computational E f f i c i e n c y o f Brown's 52 Method

3 . 3 . 4 Brown's Method I t e r a t i o n Function 53 3 . 3 . 5 M atrix Formulation o f Brown's Method 55

3 . 4 F ix e d -P o in t Formulation 56

3 .5 A p p lic a t io n of Brown's Method 57

Chapter I V% L o a d -F lo w -S o lu tio n by Brown's Method 60 (Stu dy o f Sample Systems)

4.1 In tr o d u c t io n 60

4.2 Load-Flow Problem Formulation 62

4 .3 L o a d -F lo w -S o lu tio n A lg o rith m 63 4 .4 Brown's Load-Flow Results and Comparison 65

4 .5 Summary 80

(11)

Chapter

Chapter

Chapter

\Js Optimal Load Flow S o lu t io n by Brown's

Method ■

5.1 In tr o d u c t io n

5.2 Basic Equations fo r Optimal Load-Flow 5.3 Optimal Load-Flow Problem Formulation 5.4 Optimal Load-Flow S o lu tio n

5. 4. 1 S o lu t io n A lg o rith m

5 . 4 . 2 In e q u a lit y C o n s tr a in ts on C o n tro l Parameters 5.5 Optimal Load-Flow Results and Comparison

5.6 Summary

\JIs S t a t i c S tate E stim a tio n by Brown's Method 6.1 In tr o d u c t io n

6 .2 S t a t i c St at e E stim a tio n Problem Formulation 6.3 S t a t i c State E stim a tio n S o lu tio n A lgorithm 6 .4 S t a t i c State E stim a tio n Results and Comparison

6.5 Summary

1/11 - Conclusions

Re ferences

Page 81

81 82 83 86

86 88 91 102

104 104 105 108 110

114

115

118

References

Related documents

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI..

38 Figure 3.10: Transfer characteristics of the conventional p-i-n TFET and the proposed in-built N + pocket PNPN TFET with a single chemically doped PN junction and with a

:filters,' being submitted by Rakesh Kumar Patney to the Electrical Engineering Department, Indian Institute of Technology, Delhi, for the award of the Degree of Doctor

Department of Electrical Engineering Indian Institute of Tecthology, Delhi..

Mechanical Engineering Department Center for Energy Studies Indian Institute of Technology Delhi Indian Institute of Technology Delhi New Delhi — 110016, India New Delhi —

BIOCHEMICAL ENGINEERING RESEARCH CENTRE CHEMICAL ENGINEERING DEPARTMENT INDIAN INSTITUTE OF TECHNOLOGY,DELHI.. NEW DELHI-110029

The thesis contains results of investigations obtained by the author while working as a Lecturer in the Department of Electrical Engineering,Indian Institute of Technology l

 Low Power VLSI Design and Applications, Organized by Department Electrical and Computer Engineering, Indian Institute of Technology, Roorkee from November 8 to 13,