• No results found

On optimality of the Horvitz -Thompson estimation under a Markov process model

N/A
N/A
Protected

Academic year: 2023

Share "On optimality of the Horvitz -Thompson estimation under a Markov process model"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

MMUN, STATIST.-THKoUY Mi it(. . 2u<7), 2291-229? <

199

x)

ON OPTIM ALITY OF THE HORVITZ-THOMPSON ESTIMATOR UNDER MARKOV PROCESS MODEL

A r u n K u m a r Acihikary1 Departssent O f Mathe m a t i c s

U n i v e r s i t y Of Nairobi P.O. B ox 30197 N a i r o b i , Kenya.

K e y W o r d s a n d P h r a s e s : F i n i t e p o pu lation ; Horvitz-Thompwon e s t i m a t o r M ark o v p r o c e s s model ; Varying probability s a m p l i n g .

A B S T R A C T

or a n y v a r y i n g p r o b a b i l i t y s a m p l i n g design th*

r v i t z - T h o m p s o n ( 1 9 5 2 } e s t i m a t o r is shown to be optinal : h i n t h e c l a s s o f all u n b i a s e d estim ators ot a finito

u l a t i o n t o t a l u n d e r a H a r k o v p r o c e s s model.

(2)

1. I N T R O D U C T I O N

C o n s i d e r a finit e p o p u l a t i o n U of s i z e N and let y ^ d e n o t e the v a l u e of a v a r i a t e u n d e r s t u d y for the tth unit o b s e r v e d at time t. (t = 1,...,N ). O u r p r o b l e m is to

N

e s t i m a t e the p o p u l a t i o n t o t a l ^ t= ^ y i t on the b a s i s of a 1=1

s a m p l e s dr a w n f rom the p o p u l a t i o n w i t h a p r o b a b i l i t y p(s).

A s s u m i n g that the v a r i a t e v a l u e s d e p e n d on t i m e t we c o n s i d e r a M a r k o v p r o c e s s m o d e l d e s c r i b e d b e l o w w h i c h is v e r y u s e f u l in m a n y p r a c t i c a l s i t u a t i o n s ,e . g . i n market r e s e a r c h st u d i e s w h e r e the a n a l y s i s of s a l e s f i g u r e s in s u c c e s s i v e we e k s or m o n t h s is an i m p o r t a n t problem.

C o n s i d e r i n g the c l a s s of a ll u n b i a s e d e s t i m a t o r s for Y t>

the H o r v i t z - T h o m p s o n (1 95 2 ) e s t i m a t o r is s h o w n to be o p t i m a l w i t h i n it> in the s e n s e of h a v i n g m i n i m u m e x p e c t e d

d e s i g n v a r i a n c e u n d e r the s a m e m o d e l .

2. T H E R E S U L T S

Let C d e n o t e the cl a s s of all u n b i a s e d e s t i m a t o r s of the f orm

e t = e ( s , y t) = e ( s , y u | ies) (2.1)

s u c h that e t d e p e n d s on o n l y those y i t ’s w h i c h are in the s a m p l e s and

^ e ( s > y t) p(s) = Y t. (2.2)

s

For e a c h u nit i. we a s s u m e the f o l l o w i n g M a r k o v p r o c e s s

model

y u = + z u • (2.3)

(3)

where <x. ( la. I < 1) is a c o n s t a n t and {Z , } is a p u r e l y

V 1 v 1 V t

random p r o c e s s w i t h m e a n zero and v a r i a n c e o'2 .We a lso assume t h a t u n d e r the a b o v e m o d e l y \ t and y are i n d e p e n d e n t l y d i s t r i b u t e d for <• * j.

Using t h e b a c k w a r d s h i f t o p e r a t o r B d e f i n e d as

B Jy. = y. for all j, the m o d e l (2.3) can be

U l , t - j

written as

( 1 - a B ) y., = Z , (2.4)

V tt 1.1

so that w e have

1 7

y u ~ l - a B u

I

= f 1 + a B + a zB 2 + . . . ] Z.,

— 2 + a Z + cx Z + . . .

l.t t t , t —1 t V > t - 2

oo

= y a Z. , . (2.5)

Z j i t., t-Jc

k = o ’

which is k n o w n as a m o v i n g a v e r a g e p r o c e s s of i nfini te order .

Writing E (V ) as the o p e r a t o r for e x p e c t a t i o n ( v a rianc e)m m with r e s p e c t to the ab o v e m o d e l , we have

E (y. ) = 0, m \.t i = 1 , . . . ,N (2.6)

and

00

V (y ) = V [ m i.t ml y a k Z t i . t -k. ]

4c = o J

00 V 2k 2

= Z "i °\

k = 0

O'2

= ----

V

* v (2.7)

W r i t i n g E (V ) as the o p e r a t o r for e x p e c t a t i o n

p p

(variance) w i t h r e s p e c t to the s a m p l i n g d e s i g n p and

(4)

w r i t i n g I"Tas the i n c l u s i o n - p r o b a b i l i t i e s ( a s s u m e d positive) for the uni ts we have the f o l l o w i n g the o r e m .

T h e o r e m 2.1

For any s a m p l i n g d e s i g n p and f or a n y e s t i m a t i o r et m the class C,we have

N 2

E V (e,) f-4- -ll. (2.8)

m p 1 i4(l-«*) I n. J

P r o o f . Wr i t i n g the H o r v i t z - T h o m p s o n ( 1 952) e s t i m a t o r as

* * . r

e t = e <s >Xt> = I "7T i.£S i

and f o l l o w i n g G o d a m b e and J o s h i (196 5 ) w e m a y w r i t e any ot h e r e s t i m a t o r e of the c l a s s C as

e t = e (s.yt) = e ( s , y t) + h ( s , y t) = e t + h t w h e r e

0 = E ph ( s , y t) - ^ h ( s , y t) p(s) s

i m p l y i n g

y h(s

,y t

) p(s)

= -

Jh(s,yt) p(s) (2.9)

ssi s3?<-

T h e n ,

E V (e.) = E V (e*) + E V (h,) + 2E C (e* h,)

p m t. p m t ' p m t p m t t

( C d e n o t i n g c a v a r i a n c e w i t h r e s p e c t to the m o d e l )•

(5)

N , y :

= ‘ . [ I T T {

S 3

p<s)} ]

b y u s i n g (2.9)

= 0, b y i n d e p e n d e n c e of y u and y ^ ’s V i*j.

So, E V ( e ) >p m t E V (e*). p m t (2.10)

F o l l o w i n g G o d a m b e and T h o m p s o n (1977), we can w r i t e E m V o( e .> = E oV m < e .> + m p t p m t p m t - VJ Ym t l>*

where A (e.) = E ( e . ) - E (Y ),

m t m t m t

so that E V (e.) > E V (e*) - V (Y ) (2.11)

m p t p m t m t

b y u s i n g (2.10)

= 5 - \ ( i 4 l = l( l-ot )

l( 1-0^)

V J

Next w e c o n s i d e r the f o l l o w i n g t h e o r e m of p r a c t i c a l i m p o r t a n c e .

Theorem 2 .2

F or a n y s a m p l i n g d e s i g n p and for any e s t i m a t o r et in the c l a s s C, we have

E V (e.) 2: E V <e*).m p t m p t '

P r o o f . F r o m the G o d a m b e - T h o m p s o n ( 1 977) f o r m u l a a p p l i e d to et, we w r i t e

E n,V o < e t> = W « ! ) + E oA ^ e I ) - Wm p t p m t p m t m t' and use t he fa ct that A ( e , ) = 0 to obt a i nm t

E m Vm p e .> = E „v m ( e .> - Wt p m t m t

< E V (e ), b y (2.11).m p t

Remark 1 . W e m a y n o t e that u n d e r the p r e s e n t s t a t i o n a r y time s e r i e s m o d e l all the e s t i m a t o r s h ave b e e n s t a n d a r d i z e d to have m o d e l e x p e c t a t i o n zero.

(6)

R e m a r k 2 P o s t u l a t i n g v a r i o u s s u p e r - p o p u l a t i o n m o d e l s the s e v e r a l re s u l t s on o p t i m a l i t y of the H o r v i t z - T h o m p s o n (1952) e s t i m a t o r are a v a i l a b l e in the l i t e r a t u r e viz.

G o d a m b e (1955) ,G o d a m b e and J o s h i ( 1 9 6 5 ) and m a n y others w h e r e b o t h the H o r v i t z - T h o m p s o n ( 1 9 5 2 ) e s t i m a t o r a nd its c o m p e t i t o r s are b a s e d on an i n c l u s i o n probabi lity p r o p o r t i o n a l to si ze (IPPS) s a m p l i n g d e s i g n .But it is i n t e r e s t i n g to n o t e that u n d e r the p r e s e n t s t a t i o n a r y time s e r i e s model n e i t h e r the H o r v i t z - T h o m p s o n (1952) estimator nor its c o m p e t i t o r m u s t be b a s e d on an I P P S s a m p l i n g design or even a fixed s a m p l e s ize d e s i g n and we g e t the o p t i m a l i t y of the H o r v i t z - T h o m p s o n ( 1 95 2) e s t i m a t o r for any v a r y i n g p r o b a b i l i t y s a m p l i n g d e s i g n .Also we may n o t e that no r e s t r i c t i o n s on th e m o d e l p a r a m e t e r s are n e e d e d to e s t a b l i s h the o p t i m a l i t y .

A C K N O W L E D G E M E N T

T he a u t h o r is g r a t e f u l to the r e f e r e e for m a n y helpful s u g g e s t i o n s w h i c h s u b s t a n t i a l l y i m p r o v e d on an earlier v e r s i o n of the paper.

B I B L I O G R A P H Y

G o d a m b e ,V .P . ( 1 9 5 5 ) . A u n i f i e d t h e o r y of s a m p l i n g f r o m finite p o p u l a t i o n s .

J .Roy. S t a t i s t . S o c . S e r . B .1 7.2 6 9-2 7 8.

G o d a m b e , V . P . a n d J o s h i ,V .M . (1965 ).A d m i s s i b i 1 ity a n d Bayes e s t i m a t i o n in s a m p l i n g fr om f i n i t e p o p u l a t i o n s -I.

A n n . M a t h . S t a t i s t. 3 6 .1707-1722.

(7)

G o d a m b e ,V .P .and T h o m p s o n ,M .E . ( 1 9 7 7 ) . R o b u s t n e a r o p t i m a l e s t i m a t i o n in s u r v e y p r a c t i c e .

B u l l . I n t . S t a t i s t . I n s t. 4 7 ,129-146.

H o r v i t z ,D .G .and T h o m p s o n ,D .J . ( 1 9 5 2 ) . A g e n e r a l i z a t i o n of s a m p l i n g w i t h o u t r e p l a c e m e n t f r o m f i n i t e u n iv erses . J . A m e r .S t a t i s t .A s s o c.47,6 63-685 .

Received June 1990; Revised March 1991.

Recommended by P. S. R. S. Rao, University of Rochester, Rochester, NY.

Refereed by James H. Drew, GTE Labs, Waltham, MA.

References

Related documents

Percentage of countries with DRR integrated in climate change adaptation frameworks, mechanisms and processes Disaster risk reduction is an integral objective of

Display of licence or permit on board the vessel.— (I) Subject to sub-rule (2), a copy of the licence or permit, duly attested by the issuing authority.shall be kept on board the

These gains in crop production are unprecedented which is why 5 million small farmers in India in 2008 elected to plant 7.6 million hectares of Bt cotton which

Angola Benin Burkina Faso Burundi Central African Republic Chad Comoros Democratic Republic of the Congo Djibouti Eritrea Ethiopia Gambia Guinea Guinea-Bissau Haiti Lesotho

In CdF also (Rochester and Olsson, 1939) tbc corresponding system is not observed Imt this region of the CdF spectrum is not yet systematically investigated owing to

The petitioner also seeks for a direction to the opposite parties to provide for the complete workable portal free from errors and glitches so as to enable

This discrepancy is due to the fact that in the arrangement used by Janossy and Rochester (1942) the threefold coincidence counter telescope was surrounded on

This result for a general Markov process, which we term as the generalized solution, is applied to a specific Markov model - the diffusion process, to arrive at a generalized