• No results found

Studies on the hydrotreating of Jatropha oil, gas oil and their blends to obtain hydrogenated oil (green diesel) using organic waste derived corbon based catalysts

N/A
N/A
Protected

Academic year: 2023

Share "Studies on the hydrotreating of Jatropha oil, gas oil and their blends to obtain hydrogenated oil (green diesel) using organic waste derived corbon based catalysts"

Copied!
31
0
0

Loading.... (view fulltext now)

Full text

(1)

   

STUDIES ON THE HYDROTREATING OF JATROPHA  OIL, GAS OIL AND THEIR BLENDS TO OBTAIN  HYDROGENATED OIL (GREEN DIESEL) USING  ORGANIC WASTE DERIVED CARBON BASED 

CATALYSTS 

   

RAJESH M 

   

   

 

CENTRE FOR ENERGY STUDIES 

INDIAN INSTITUTE OF TECHNOLOGY DELHI 

MAY 2017 

(2)

©Indian Institute of Technology Delhi (IITD), New Delhi, 2017

(3)

STUDIES ON THE HYDROTREATING OF JATROPHA OIL, GAS OIL AND THEIR BLENDS TO OBTAIN HYDROGENATED OIL (GREEN DIESEL) USING ORGANIC WASTE DERIVED

CARBON BASED CATALYSTS

by RAJESH M

CENTRE FOR ENERGY STUDIES Submitted to

in fulfillment of the requirements of the Degree of Doctor of Philosophy to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI MARCH 2017 MAY 2017

(4)

CERTIFICATE

This is to certify that the thesis entitled, “STUDIES ON THE HYDROTREATING OF JATROPHA OIL, GAS OIL AND THEIR BLENDS TO OBTAIN HYDROGENATED OIL (GREEN DIESEL) USING ORGANIC WASTE DERIVED CARBON BASED CATALYSTS” being submitted by Mr. M. Rajesh to the Indian Institute of Technology Delhi for the award of the degree of Doctor of Philosophy is a record of original bonafide research work carried out by him under our supervision for the submission of this thesis which to our knowledge has reached the requisite standard.

Thesis or any part of this has not been submitted to any other University or Institute in part or full for any award of degree or diploma.

Dr. D. K. Sharma Dr. R.K. Malhotra Emeritus Professor Adjunct Professor

Centre for Energy Studies Manav Rachna International University Indian Institute of Technology Delhi, Faridabad-121004 New Delhi-110016, India Haryana

Dr. M. Sau Dy. Gen. Manager

Research & Development Centre Indian Oil Corporation Ltd Faridabad-121007

Date:

New Delhi

(5)

Acknowledgements

I wish to express my sincere gratitude to my supervisor in IIT Delhi, Prof D.K. Sharma for his valuable guidance and excellent support that has helped me to complete my research work. His interest on biofuels, biomass conversion, and green chemistry and biorefinery concepts has motivated me to strengthen my knowledge and understanding of the topic fully. When I thought whether biomass could be used as support material for making catalyst and this was communicated to him, he had appreciated my idea and advised me to work on this area and provided me valuable information and constant advice and without those supports, this work definitely won’t be completed. I am always indebted to him for his contribution in shaping up of my research work. My association with him during the entire period of my work will always cherish my memory.

I wish to express my deep gratitude to Prof. K.K. Pant and Assistant Prof. K.A. Subramanian for their valuable suggestions in the area of catalysis and biofuels. I would like to offer my sincere thanks to Prof.

T.S. Bhatti and Prof. Uma for their help and cooperation during the entire period of my work at CES.

I wish to express my sincere gratitude to my Co supervisors from Indian Oil R&D centre Dr. R. K.

Malhotra and Dr. M. Sau for their constant support and valuable suggestions. I am very thankful to Dr.

R.K. Malhotra for allowing me to carry out my experimental work at Indian Oil, R&D centre. I owe my sincere thanks to Dr. M. Sau for making me to understand the hydroprocessing technology since I was a novice in that field when I started my research work. Apart from my discussion with Prof. D.K. Sharma on regular basis, the practical part of my work was supervised by Dr. M. Sau and he regularly monitored the progress of my work and guided me to carry out my experimental work confidently in the hydroprocessing pilot plant.

I would like to express my sincere thanks to Indian Oil, R&D scientist Dr. J. Christopher and his team members Dr. Rashmi Bagai, Dr. V. Pandey, Dr. Amardeep Singh, Mr. Saeed Ahmed and Ms.Neetu Singh for their contribution on XRD, XRF, TEM, SEM, TGA and ICP analysis of catalyst and biomass samples.

(6)

I am very thankful to Dr. E. Ramu and Ms Suman Mukerjee of Indian Oil, R&D centre for helping me for carrying out IR and CHNS analysis. I would also like to express my sincere thanks to Dr. Anju Chopra, Dr. Dheer Singh and Mr. A.K. Tiwari and Ms.Vatsala Sugumaran for helping on GC and HR-MS analysis of diesel samples. I would like to thank Dr. Anil Yadav and Mr. K. David for helping me on HPLC analysis of hydrotreated gas oil and Jatropha oil.

I would like to convey my whole hearted thanks to my senior colleagues Mr. O.P.Nandwani and Mr. M.

Karthikeyan of catalyst department of Indian Oil R&D Centre for helping me in the analysis of SimTBP, nitrogen and sulphur analysis on regular basis of products collected from pilot plant till my experimental part was over. I take this opportunity to thank my all friends and colleagues for their constant support and help. To name a few I would like to thank my IIT colleagues Ms. Shelly Biswas, Ms. Kshipra Gautam, Mr. Ajay Gautam and my IOCL senior colleagues Mr. K. Ramesh, Mr. Viswakarma, Mr. A. Vignesh, Mr.

Harish Kumar, Mr. B. Ravi Kumar, Mr. Kamal Kumar, Mr. Sandeep Kumar Singh, Mr. A. Arun, Ms.

Yamini Gupta, Mr. Kamlesh Gupta, Mr.Pappu Naresh and Mr. D.M.Dave. I am also thankful to Dr. A.P.

Singh, Dr. S. Nandi and Dr. S.K. Mazumdar of Fuel Research Department of Indian Oil R&D centre for their full cooperation and support whom I was reporting for my official work.

Last but not the least I would like to thank my wife Saraswathi for her love and affection in my life and I am sure without her support I would not sustain for such a long period for spending time on study. I owe my daughters R. Maithreyi and R.Srishti for their wonderful smile which always get rid of my tiredness and helped in boosting my ambition in life. I would like to thank my mother and my mother in law for their constant prayer of my well being and taking care of my children whenever I was away from home in connection with my PhD work. Finally I would like to thank the Almighty Lord Siva and Lord Ganesh for their permanent blessings in my life.

RAJESH M

(7)

Abstract

Considering the continuous depletion of crude oil and coal, world over various alternative sources of energy are being explored to meet fuel demand. Biofuel is one such alternative source of energy which can meet partially the diesel demand. Research on making biofuel from seed oils and gasification of biomass to syngas and syngas to fuel and also thermal degradation of biomass to bio-oil are gaining attention globally. Seed oil and bio-oils contain high volume of oxygen content and also the viscosity of these oils is very high due to which these oils cannot be used directly in internal combustion engines.

There are several methods such as transesterification, thermal cracking, thermal catalytic cracking, fluid catalytic cracking; hydrotreating and hydrocracking have been studied for conversion of vegetable oil to green diesel. The present work has been focused on hydrotreating of vegetable oil and its blend with gas oil to produce diesel using organic waste derived carbon based catalysts.

Activated carbons (AC) had been reported as a potential alternative to the commonly used support such as alumina for hydrotreating reactions. The present study has been carried out for the conversion of Jatropha Oil (JO), gas oil (GO) and their mixtures into green diesel through hydrotreating process under refinery diesel hydrotreating conditions using Ni-Mo and Co-Mo (CAT-A and CAT-B) catalysts supported on commercial AC. No literature information seems to be available for hydrotreating of JO and JO+GO mixtures using AC supported catalysts. The activity of Ni-Mo/Co-Mo catalyst developed from commercial AC was compared with commercial Ni-Mo catalyst on an alumina support (CAT-C). To reduce the energy and cost associated with preparation of conventional AC based catalysts, attempt has been made to prepare Ni-Mo catalyst directly from organic wastes such as pea pods (CAT-P), Jatropha leaves (CAT-J), and Tea leaves (CAT-E) as carbon support using boric acid as a chemical activating agent and this method of preparation is different from the conventional method of preparation of hydrotreating catalyst from AC reported elsewhere in the literature. The supports such as AC, Tea leaves (TL), Pea pods (PP) and Jatropha leaves (JL) and catalyst prepared from them (CAT-A, CAT-B, CAT-E,

(8)

CAT-P and CAT-J) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), FT-IR, XRD, XRF, CHNS, ash, Iodine number and BET surface area analysis by N2 adsorption-desorption analysis. The hydrotreating reactions were performed in a fixed bed stainless steel tubular reactor. The reactions of GO and mixtures of JO blended GO were studied at 90 bar H2 pressure with the feed flow rate of 7ml/ h and H2 flow rate of 3.5 standard litre per hour hydrogen (SLPH) at different temperature conditions. The reaction of JO was studied at 370◦C and by keeping the other process parameters constant. The reactions were carried out systematically first with GO followed by 5, 10 and 20% JO blend in GO and then finally by neat JO.

All the catalysts were prepared in such a way that the final concentration of Ni was in the range of 0.5-2%

and Mo was in the range between 8-12%w/w. The feed GO used in the study had 13,360 ppm sulphur and 104 ppm nitrogen and virtually contained no metals. JO used in the study had metal content of 350 ppm.

Hydrodesulphurization (HDS) activity of Co-Mo on AC (CAT-A) and commercial Ni-Mo/Alumina (CAT-C) was found to be more effective even at 330◦C and at this temperature, sulphur in GO had been

reduced to less than 50 ppm by the use of these catalysts, however at this temperature Ni-Mo/PP (CAT-P) had reduced the sulphur content in GO to 125 ppm and Ni-Mo/JL (CAT-J) had

reduced the sulphur in GO to 275 ppm and Ni-Mo/ TL (CAT-E) had reduced the sulphur in GO to 175 ppm. When the temperature was increased to 370◦C, the sulphur in GO had come down to 35 and 50 ppm for both CAT-A and CAT-C catalyzed reactions which is a marginal change over the product sulphur obtained at 330◦C by these catalysts. However at 370◦C, the use of CAT-P had reduced the sulphur in GO to 50 ppm and that of CAT-J had reduced the sulphur in GO to 80 ppm and the use of CAT-E had reduced the sulphur in GO to less than 50 ppm. Thus, at higher temperature condition (370◦C, 90 bar, LHSV1 hr-1) the HDS activity of biomass derived carbon based catalyst (CAT-P, CAT-J, CAT-E) was found to be at par with that of CAT-A and CAT-C.

The HDS activity of all these catalysts were also studied for coprocessing of JO in GO up to 20% under the same reaction conditions. At 370◦C, the sulphur content in 20% JO in GO feed was reduced to less

(9)

than 10 ppm for CAT-A catalyzed reactions and in the case of CAT-C the reduction was down to 25 ppm and in the case of CAT-B it was 40 ppm and for CAT-P catalyzed reaction the sulphur had been reduced to 30 ppm and in the case of CAT-J it was reduced down to 50 ppm and for CAT-E it was around 40 ppm. It reveals that when JO was diluted with GO, the HDS activity of these catalysts does not get affected. Therefore it shows that reactions of HDS of GO and HDO of JO are not competitive. The order of HDS and HDN activity in GO as well as 20% JO in GO was found to be CAT-A>CAT-C>CAT- B>CAT>P>CAT-E>CAT-J. The liquid and gaseous products obtained from hydrotreatment of GO, JO and JO+GO mixtures were analyzed by GC, HR-MS, FT-IR and by HPLC analysis. The liquid product obtained from hydrotreatment of JO studied at 370◦C, 90 bar using CAT-J, CAT-E and CAT-P catalyzed reactions had shown around 10-12 wt% aromatics (HR-MS analysis) where as the formation of aromatic content was found to be below 5% in the liquid product obtained from hydrotreatment of JO using CAT-A, CAT-C and CAT-B catalyzed reactions. GC analysis had shown that the liquid products of hydrotreated JO obtained from CAT-P, CAT-J, CAT-E and CAT-C and CAT-B catalyzed reactions were found to be mostly in diesel range. The boiling point of gasoline range obtained from hydrotreatment of JO was found to be below 3% for all the catalysts studied presently. No metals were detected in the hydrotreated JO obtained from CAT-P, CAT-J and CAT-E, CAT-C A and CAT-B catalyzed reactions.

The FT-IR analysis of hydrotreated JO had shown no peak of esters, acids or alcohols. Water was also found in the liquid products obtained from hydrotreated JO and JO in GO products for all the catalysts studied presently. GC analysis of gaseous products obtained from the hydrotreatment of JO had shown that the major effluents formed consisting of CO2, CO and propane. The yield of CO2 and CO obtained from the hydrotreatment of JO was found to be high for CAT-P and CAT-J catalyzed reactions than that from the CAT-A, CAT-C and CAT-B catalyzed reactions.

(10)

सार

ईंधन की माांग को पूरा करने के लिए कच्चे तेि और कोयिे की लनरांतर कमी को देखते हुए ऊर्ाा के लिलिन्न

िैकलपपक स्रोतों पर दुलनया का पता िगाया गया है। र्ैि ईंधन ऊर्ाा का एक ऐसा िैकलपपक स्रोत है र्ो आांलिक रूप से डीर्ि माांग को पूरा कर सकता है।. बीर् के तेिों से र्ैि ईंधन बनाने और बायोमास के गैसीकरण से

िेकर लसन्गस और लसग्र् तक ईंधन के लिए अनुसांधान और बायो-ऑइि को बायोमास के थमाि लडग्रेडेिन पर ध्यान ददया र्ा रहा है।.बीर् के तेि और र्ैि-तेि में उच्च मात्रा में ऑक्सीर्न सामग्री होती है और इन तेिों की

लिपलिपाहट बहुत अलधक होती है लर्सके कारण इन तेिों को आांतररक दहन इांर्नों में सीधे नहीं इस्तेमाि

दकया र्ा सकता है। ट्ाांससेरररदिकेिन, थमाि क्रैककांग, थमाि उत्प्रेरक क्रैककांग, तरि उत्प्रेरक क्रैककांग र्ैसे कई तरीके हैं; िनस्पलत तेि से िेकर हररयािी डीर्ि के रूपाांतरण के लिए हाइड्रोट्ेटटांग और हाइड्रोकाकक्रांग का

अध्ययन दकया गया है। ितामान काम पर िनस्पलत तेि के हाइड्रेट्ीट्ीटटांग और गैस तेि के साथ लमलित काबालनक अपलिष्ट काबान आधाररत उत्प्रेरक का उपयोग कर डीर्ि बनाने पर ध्यान केंदित दकया गया है।सदक्रय काबान (एसी) को सामान्यतः इस्तेमाि दकए र्ाने िािे समथान र्ैसे सांिालित उप-रलतदक्रयाओं के लिए एपयूलमना र्ैसी रलतदक्रया के रूप में सूलित दकया गया था। ितामान अध्ययन, र्ेटोिा ऑयि (र्ेओ), गैस ऑयि

(र्ीओ) और उनके लमिण को हरी डीर्ि में हरी डीर्ि के रूपाांतरण के लिए दकया गया है, र्ो नी-मो और को- मो (कैट-ए और सीएटी) के र्ररये ररिाइनरी डीर्ि हाइड्रेट्ीरटटटांग ितों के तहत हाइड्रोट्ेटटांग रदक्रया के

माध्यम से दकया गया है। -बी) िालणलययक एसी पर समर्थात उत्प्रेरकएओ समर्थात उत्प्रेरक का उपयोग करते

हुए र्ॉ और र्ॉ + र्ीओ के लमिण के लिए कोई सालहत्प्य र्ानकारी उपिब्ध नहीं है। िालणलययक एसी से

लिकलसत नी मो / सह-मो उत्प्रेरक की गलतलिलध एपयूलमना समथान (कैट-सी) पर िालणलययक नी-मो उत्प्रेरक के

साथ तुिना की गई थी। परांपरागत एसी आधाररत उत्प्रेरक की तैयारी से र्ुडे ऊर्ाा और िागत को कम करने के

लिए, ने-मो उत्प्रेरक को मटर पेड्स (कैट-पी), र्ेट्ोिा पलियों (कैट-र्े), और िाय पलियों र्ैसे काबालनक किरे से

सीधे तैयार करने का रयास दकया गया है। (सीएटी-ई) काबान के रूप में बोररक एलसड का रयोग रासायलनक सदक्रयण एर्ेंट के रूप में दकया र्ाता है और तैयारी की इस पद्धलत को सालहत्प्य में कहीं और एसी से र्ि

लनकािने िािी उत्प्रेरक तैयार करने की परांपरागत लिलध से अिग है।

एसी, िाय पलियों (टीएि), मटर पीड (पीपी) और र्ेट्ोिा पलियों (र्ेएि) और उत्प्रेरक र्ैसे कैट-ए, कैट-बी, कैट-ई, कैट-पी और कैट-र्े) स्कैननांग इिेक्ट्ॉन माइक्रोस्कोपी (एसईएम), ट्ाांसलमिन इिेक्ट्ॉन माइक्रोस्कोपी

(टीईएम), थमोग्रालिमेरट्क लिश्लेषण (टीर्ीए), एिटी-आईआर, एक्सआरडी, एक्सआरएि, सीएनएनएस, एि, आयोलडन नांबर और बीईटी सतह क्षेत्र लिश्लेषण

N2 सोखना- desorption लिश्लेषण द्वारा एक लनलित लबस्तर

स्टेनिेस स्टीि ट्यूबिर ररएक्टर में हाइड्रोट्ेटटांग रलतदक्रयाएां की गईं। र्ीओ और लमलित र्ीओ के लमिणों की

रलतदक्रयाएां 90 लमिीिीटर एि 2 के दबाि के साथ-साथ 7 लमिीिीटर / एि की फीड रिाह दर और लिलिन्न तापमान लस्थलतयों में

3.5

मानक िीटर रलत घांटे हाइड्रोर्न (एसएिपीएि) की एि

2

रिाह दर के साथ अध्ययन की गईं। र्ेओ की रलतदक्रया 370 ◦ सी पर और दूसरी रदक्रया मापदांडों को लनरांतर रखने के द्वारा दकया

गया। रलतदक्रयाओं को व्यिलस्थत रूप से पहिे GO के साथ दकया गया, उसके बाद 5, 10 और 20% JO र्ो में

लमिण और दिर आलखर में स्िच्छ JO द्वारा।

(11)

सिी उत्प्रेरक ऐसे तरीके से तैयार दकए गए थे दक नी की अांलतम एकाग्रता

0.5-2%

की सीमा में थी और मो

अिलध

8-12%

के बीि थी /

w

अध्ययन में इस्तेमाि की गयी फीड में

13,360

पीपीएम सपिर और

104

पीपीएम नाइट्ोर्न थे और िगिग कोई धातु नहीं था। अध्ययन में इस्तेमाि दकए र्ाने िािे

JO

में

350

पीपीएम की धातु सामग्री थी। एसी (कैट-ए) और िालणलययक नी-मो / एपयूलमना (सीएटी-सी) पर सह-मो के

हाइड्रोडसुििराइर्ेिन (एिडीएस) की गलतलिलध 330 ◦ सी पर िी और अलधक रिािी सालबत हुई थी और इस तापमान पर, गॉपफ में सपिर को घटा ददया गया था इन उत्प्रेरक के उपयोग से 50 से कम पीपीएम तक, हािाांदक इस तापमान पर नी-मो / पीपी (कैट-पी) ने सोिर सामग्री को र्ीओ में

125 पीपीएम और नी-मो /

र्ेएि (कैट-र्े) ने घटा ददया था। सपिर र्ीओ में 275 पीपीएम और नी-मो / टीएि (कैट-ई) ने सोिर को र्ीओ में 175 पीपीएम तक घटा ददया था। र्ब तापमान 370 ◦ सी तक बढ़ गया, तो र्ीओ में सपिर कैट-ए और कैट- सी उत्प्रेररत दोनों रलतदक्रयाओं के लिए 35 और 50 पीपीएम नीिे आ गया, र्ो इन उत्प्रेरक द्वारा 330 ◦ सी में

राप्त उत्प्पाद सपिर पर सीमाांत पररितान है। । हािाांदक

370 ◦

सी पर, सीएटी-पी का उपयोग र्ीओ में

50

पीपीएम में सपिर को कम कर ददया गया था और कैट-र्े की िर्ह से र्ीओ में 80 पीपीएम में सपिर कम हो

गया था और कैट-ई के उपयोग ने गौ से र्ीओ को कम कर ददया था

50

पीपीएम से कम इस रकार, उच्च तापमान की लस्थलत में (370 ◦ सी, 90 बार, एिएिएसिी

1

घांटा -1) बायोमास व्युत्प्पन्न काबान आधाररत उत्प्रेरक (सीएटी-पी, कैट-र्े, कैट-ई) की एिडीएस गलतलिलध उस के बराबर पाया गया कैट-ए और कैट-सी

इन सिी उत्प्रेरक के एिडीएस गलतलिलध का िी अध्ययन में एक ही रलतदक्रया की लस्थलत के तहत

20% तक

र्ाने में JO के coprocessing के लिए अध्ययन दकया गया। 370 सी में, र्ीओ फीड में 20% JO में सपिर सामग्री

कम हो गई थी

सीएटी-ए उत्प्रेररत रलतदक्रयाओं के लिए

10

पीपीएम से और सीएटी-सी के मामिे में कटौती

25

पीपीएम के

लिए कम हो गई थी और सीएटी-बी के मामिे में 40 पीपीएम था और सीएटी-पी उत्प्रेररत रलतदक्रया के लिए सपिर को 30 से घटा ददया गया था पीपीएम और कैट-र्े के मामिे में इसे 50 पीपीएम तक कम कर ददया गया

था और कैट-ई के लिए यह

40

पीपीएम था। यह पता ििता है दक र्ब र्ीओ के साथ पतिा था, तो इन उत्प्रेरक की एिडीएस गलतलिलध रिालित नहीं होती है। इसलिए यह ददखाता है दक र्ीओ के एिडीएस और र्ेओ के एिडीओ की रलतदक्रया रलतस्पधी नहीं हैं। र्ीओ में एिडीएस और एिडीएन गलतलिलध के साथ ही

र्ीओ में 20% र्ॉब का ऑडार कैट-ए> कैट-सी> कैट-बी> कैट> पी> कैट-ई> कैट-र्े र्ीओ, र्ेओ और र्ो + र्ीओ लमिण के हाइड्रोराइटमेंट से राप्त तरि और गैसीय उत्प्पादों का लिश्लेषण र्ीसी, एिआर-एमएस, एिटी- आईआर और एिपीएिसी लिश्लेषण द्वारा दकया गया। सीएटी-र्े, कैट-ई और कैट-पी उत्प्रेररत रलतदक्रयाओं का

उपयोग करते हुए 370 ◦ सी, 9 0 बार पर अध्ययन दकए गए र्ॉइस के हाइड्रोट्ेटमेंट से राप्त तरि उत्प्पाद 10-12

wt% एरोमेरटक्स (एिआर-एमएस लिश्लेषण) के आसपास ददखाया गया था, र्हाां के गठन के रूप में कैट-ए, कैट-

सी और कैट-बी उत्प्रेररत रलतदक्रयाओं का उपयोग करते हुए र्ेड के हाइड्रॉटरेटमेंट से राप्त तरि उत्प्पाद में

खुिबूदार सामग्री 5% से नीिे पाया गया। र्ीसी लिश्लेषण ने ददखाया था दक सीएटी-पी, कैट-र्े, कैट-ई और कैट- सी और सीएटी-बी उत्प्रेररत रलतदक्रया से राप्त हाइड्रोट्ेएटेड र्े के तरि उत्प्पाद ययादातर डीर्ि रेंर् में पाए गए थे। र्ेओ के हाइड्रॉटरेट से राप्त गैसोिीन िेणी का उबिते नबांदु ितामान में सिी उत्प्रेरकयों के लिए 3% से

नीिे पाया गया। सीएटी-पी, कैट-र्े और कैट-ई, कैट-सी ए और सीएटी-बी उत्प्रेररत रलतदक्रयाओं से राप्त

(12)

हाइड्रोट्ेएटेड र्ेओ में कोई धातु का पता नहीं िगा था।

Hydrotreated JO के एिटी-आईआर लिश्लेषण एस्टर,

एलसड या अपकोहि का कोई िोटी नहीं ददखाया था। ितामान में अध्ययन दकए गए सिी उत्प्रेरकों के लिए र्ि

उत्प्पादों में राप्त हाइड्रोट्ेएटेड एमओ और र्ीओ उत्प्पादों के तरि उत्प्पादों में पानी िी लमिा। र्ीओ के

हाइड्रोट्ेटमेंट से राप्त गैसीय उत्प्पादों का र्ीसी लिश्लेषण ददखाया था दक सीओ 2, सीओ और रोपेन से लमिकर

बनने िािे रमुख अपलिष्ट पदाथा सीएटी-ए, कैट-सी और कैट-बी उत्प्रेररत रलतदक्रयाओं से सीएटी-पी और

सीएटी-र्े उत्प्रेररत रलतदक्रयाओं के लिए सीओ 2 और सीओ की पैदािार यूए के हाइड्रोरट्टमेंट से राप्त हुई थी।

(13)

CONTENTS

TITLE Page No

CERTIFICATE i

ACKNOWLEDGEMENT ii

ABSTRACT iv

LIST OF FIGURES xiv

LIST OF TABLES xx

ABBREVIATIONS xxiv

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 8

2.1 Demand for diesel fuel 8

2.2 Vegetable oil as an alternate to diesel 9

2.3 Vegetable oil conversion methods 9

2.4 Hydroprocessing (Hydrotreating and Hydrocracking) 12

2.5 Catalysts for Hydroprocessing reactions 16

2.6 Type I and Type II Phase 19

2.7 Sulphidation of catalysts 20

2.8 Typical oxygen compounds 22

2.9 Hydroprocessing of vegetable Oil 24

2.10 Hydrotreating of Neat vegetable oil 27

2.11 Hydrocracking of Neat vegetable oil 31

2.12 Coprocessing of vegetable oil with gas oil/vacuum gas oil 34

(14)

2.13 Coprocessing of vegetable oil with gas oil under hydrotreating conditions 34 2.14 Coprocessing of vegetable oil with gas oil/vacuum gas oil

under hydrocracking conditions 35

2.15 Challenges in hydrotreating Vegetable oil 36

2.16 Activated carbon as catalyst support 40

2.17 Preparation of activated carbon 43

2.18 Activated Carbon support for hydroprocessing of vegetable oil 47

CHAPTER 3: PREPARATION AND CHARACTERIZATION OF HYDROTREATING CATALYST FROM ACTIVATED CARBON (AC) AND USED TEA LEAVES (CAMELLIA SINENSIS) DERIVED CARBON AS CATALYST SUPPORT

3.1 Introduction 50

3.2 Experimental 52

3.2.1 Materials 52

3.2.2 Experimental preparation of catalyst from AC 53

3.2.3 Experimental preparation of catalyst from used tea leaves 54 3.2.4 Analytical methods used for catalyst characterization 57

3.2.4.1 BET surface area analysis 57

3.2.4.2 XRD analysis 57

3.2.4.3 FR-IR spectral studies 57

3.2.4.4 CHNS analysis 57

3.2.4.5 Thermogravimetric analysis (TGA) 57

3.2.4.6 Iodine number measurement 58

3.2.4.7 TEM and SEM analysis 58

3.2.4.8 Determination ash content 58

(15)

3.2.4.9 Bulk density analysis 58

3.2.4.10 Particle size distribution analysis 58

3.3 Results and Discussion 59

(Part-A: Characterization of AC, CAT-A and CAT-B)

3.3.1 Physical characteristics of AC and AC catalyst. 59

3.3.2 XRD analysis of AC, CAT-A and CAT-B 61

3.3.3 BET surface analysis of AC, CAT-A and CAT-B 63

3.3.4 FT-IR Analysis of AC, CAT-A and CAT-B 66

3.3.5 Thermogravimetric analysis of AC, CAT-A and CAT-B 69

3.3.6 SEM analysis of AC, CAT-A and CAT-B 70

3.3.7 TEM studies of AC and CAT-A 73

3.4 Results and Discussion

Part-B: Tea leaves as carbon support 76

3.4.1 Effect of boric acid and other chemical reagents for making

AC from tea leaves: Initial studies 76 3.4.2 Characterization of Ni-Mo catalyst prepared from tea leaves 80

3.4.2.1 Studies on BET surface area and iodine number 80

3.4.2.2 XRD and XRF analysis 84

3.4.2.3 FT-IR studies 89

3.4.2.4 TGA studies 93

3.4.2.5 Elemental composition of tea leaves and CAT-E 94

3.4.2.6 CHNS analysis 95

3.4.2.7 TEM studies 96

3.4.2.8 SEM studies 99

3.5 Conclusions 101

(16)

CHAPTER 4 HYDROTREATMENT OF GO, JO AND JO+GO MIXTURES USING CAT-A, CAT-B, CAT-C AND CAT-E AND CHARACTERIZATION OF THE LIQUID AND

GASEOUS PRODUCTS FORMED

4.1 Introduction 103

4.2 Experimental Section 104

4.2.1 Materials 104

4.2.2 Micro down flow reactor set up 106

4.2.3 Sulphidation of the catalyst 108

4.2.4 Experimental conditions 110

4.2 Analytical methodology used for characterization of hydrotreated products 111

4.3.1 FT-IR Spectral studies 111

4.3.2 HC22 hydrocarbon types analysis 111

4.3.3 Gas Chromatography (GC) analysis 111

4.3.4 GC analysis of gaseous products 112

4.3.5 Sulphur & Nitrogen determination 112

4.3.6 Pour point & cloud point analysis 113

4.3.7 Total Acid Value (TAN) 113

4.3.8 Distillation study 113

4.3.9 Density analysis 113

4.3.10 Mono, di and poly aromatic content by HPLC 114

4.3.11 Cetane Index 114 4.3 Results and Discussion

(17)

4.4.1 HDS and HDN activity of CAT-A, CAT-B, CAT-C and CAT-E of Gas Oil

Studied at different temperatures 114

4.4.2 Effect of temperature on HDS of mixtures of Jatropha Oil and Gas Oil 117

4.4.3 Studies on density of hydrotreated Gas oil 122

4.4.4 Density of hydrotreated JO and JO+GO mixtures 124

4.4.5 Studies on boiling point distribution of hydrotreated Gas Oil 128 4.4.6 Studies on boiling point distribution of hydrotreated JO+GO mixtures 128 4.4.7 Studies on Mono, di, poly and saturate content of hydrotreated Gas Oil 131 4.4.8 Studies on Mono, di, poly and saturate content of hydrotreated Jatropha oil

and Gas oil mixtures 134

4.4.9 Studies on Cetane Index of hydrotreated GO and JO+GO mixtures 136 4.4.10 Gaseous product analysis of hydrotreated GO and JO +GO mixtures 138 4.4.11 HR-MS analysis of hydrotreated Gas Oil

and 20% Jatropha oil and Gas Oil mixtures 144

4.4.12 FT-IR analysis of hydrotreated Gas Oil, Jatropha Oil

and Jatropha Oil and gas oil mixtures 147

4.4.13 Pour and cloud point analysis of hydrotreated GO, JO and JO+GO 151 4.4.14 HR-MS (High resolution mass spectroscopy) analysis of hydrotreated of JO 154

4.4.15 Carbon number distribution (CND) of hydrotreated JO 156

4.4.16 Studies on boiling point distribution of hydrotreated JO 158 4.4.17 Discussion on reaction mechanism for hydrotreating of JO 160

4.5 Conclusions 161

(18)

CHAPTER 5

PREPARATION AND CHARACTERIZATION OF Ni-Mo HYDROTREATING CATALYST FROM PEA POD (PISUM SATIVUM L) AND JATROPHA LEAVES (JATROPHA CURCAS) AS CARBON SUPPORTS.

5.1 Introduction 164

5.2 Experimental and Methodology 166

5.2.1 Materials 166

5.2.2 Experimental preparation of CAT-P and CAT-J 167

5.2.3 Analytical methods used for characterization of the catalysts 169

5.3 Results and Discussion 171

5.3.1 CHNS Analysis 171

5.3.2 Elemental composition of PP, JL and CAT-P and CAT-J by ICP and XRF 172

5.3.3 Ash content of PP, JL and CAT-P and CAT-J 175

5.3.4 Thermo gravimetric analysis (TGA) of PP, JL, CAT-P and CAT-J 176

5.3.5 XRD analysis for Structural investigation 179

5.3.6 BET surface area analysis 184

5.3.7 FTIR Spectral studies 187

5.3.8 SEM analysis of PP, JL and Catalyst samples 191

5.4 Conclusions 195

(19)

CHAPTER 6 HYDROTREATMENT OF GO, JO AND COPROCESSING OF THEIR MIXTURES USING CAT-P AND CAT-J AND CHARACTERIZATION OF THE LIQUID AND GASEOUS PRODUCTS FORMED.

6.1 Introduction 196

6.2 Experimental section 197

6.3 Product characterization 197

6.4 Results and Discussion 198

6.4.1 Screening of CAT-P and CAT-J for HDS of GO and JO+GO mixtures 198 6.4.2 Studies on boiling point distribution of hydrotreated GO, JO and

20% JO + GO mixtures 202

6.4.3 HR-MS studies of hydrotreated JO 206

6.4.5 FT-IR studies hydrotreated GO, JO and 20% JO in GO products 209 6.4.6 Studies on density of hydrotreated GO, JO and 20% JO in GO mixtures 214

6.4.7 Gaseous products analysis 215

6.4.8 Carbon number distribution (CND) of hydrotreated JO 216 6.4.9 Flow characteristics of hydrotreated JO obtained from CAT-P and CAT-J 218

6.4 Conclusions 220

CHAPTER 7 SUMMARY AND FUTURE SCOPE OF WORK 223

REFERENCES 229-249

ABOUT THE AUTHOR 250-251

(20)

LIST OF FIGURES

Fig. No. Title Page No

Fig.2.1 Vegetable oil upgrading processes 10

Fig. 2.2 Mechanism of transesterification of vegetable oil 11 Fig.2.3 Thermal catalytic cracking products from vegetable oil 11

Fig.2.4 US EPA regulations for Diesel and ATF 14

Fig.2.5 Simplified flow diagram of Refinery processes and products 14

Fig.2.6 Typical sulphur compounds in Gas Oil 15

Fig.2.7 Simplified reaction mechanism of hydrotreating reaction 16 Fig.2.8 Schematic illustration of the hydrotreating process 17 Fig.2.9 Typical hydroprocessing catalyst systems 19 Fig.2.10 Common steps in the preparation of hydrotreating catalyst 21

Fig.2.11 Typical structure of Vegetable oil 24

Fig.2.12 Predicted products formed from hydrotreating of JO 27 Fig.2.13 Typical hydroprocessing conditions and possible major products

obtained from vegetable oil 28 Fig.2.14 Hydrodeoxygenation of linoleic acid molecule 28

Fig. 2.15 Typical reaction mechanism of hydrotreating of triglyceride 30 Fig.2.16 Typical process steps of hydrotreating catalyst preparation 39

Fig.2.17 Carbon material use in US market. 41

Fig. 2.18 Nature of pores in Activated Carbon 42

Fig.2.19 Steam and CO2 activation of carbon 44

(21)

Fig. 2.20 Process steps in involved in the production of activated carbon 45

Fig.2.21 Surface functional groups of AC 48

Fig.3.1 Simplified flow chart of Preparation of catalyst from used tea leaves 55

Fig.3.2 XRD spectra of CAT-A 62

Fig.3.3 XRD spectra of CAT-B 62

Fig.3.4 XRD spectra of AC, CAT-A and B 62

Fig.3.5 Multipoint BET plot of AC support 64

Fig.3.6 BJH desorption method of AC 64

Fig. 3.7 BJH desorption method of CAT-A 65

Fig. 3.8 BJH desorption method of CAT-B 65

Fig.3.9 FT-IR spectra of AC 67

Fig.3.10 FT-IR spectra of CAT-A 67

Fig.3.11 FT-IR spectra of CAT-B 67

Fig 3.12 TGA scans of AC, CAT-A and CAT-B 69

Fig. 3.13 SEM images of AC, CAT-A and CAT-B at different magnifications 70

Fig. 3.14 TEM images of AC and CAT-A 73

Fig. 3.15 Iodine number of carbonized tea leaves with other chemical agents 77 Fig. 3.16 BET and BJH isotherm of tea leaves and

boric acid treated AC from tea leaves 79

Fig.3.17 BET and BJH isotherm of CAT-E 81

Fig.3.18 Decomposition of boric acid 83

Fig. 3.19 XRD spectrum of boric acid at 500◦C, N2 atmosphere 84

(22)

Fig.3.20 XRD Spectra of used tea leaves, carbonized tea leaves and carbonized

tea leaves of 1:0.25 ratio boric acid treated and water washed 85

Fig.3.21 XRD spectra of CAT-E and CAT-F 86

Fig. 3.22 XRD spectra of CAT-E, CAT-G and CAT-C 87

Fig. 3.23 XRD pattern of CAT-C and CAT-D 88

Fig.3.24 Comparison of Ni and Mo in CAT-E and CAT-C by XRF 88 Fig.3.25 FT-IR-Spectra of tea leaves and carbonized and boric acid treated samples 90 Fig.3.26 FT-IR-Spectra of CAT-E, CAT-G and Tea leaves and carbonized tea leaves 91 Fig.3.27 TGA scan of tea leaves, carbonized tea leaves and CAT-E 93 Fig.3.28 TEM image of tea leaves, carbonized tea leaves and commercial AC 97

Fig. 3.29 TEM image of CAT-E 98

Fig.3.30 TEM EDX spectrum of CAT-E 98

Fig. 3.31 SEM images of used tea leaves and carbonized char

and char of boric acid treated tea leave 99

Fig.3.32 SEM images of CAT-E 100

Fig 4.1 Simplified diagram of Micro down flow reactor (MFU) unit 107 Fig. 4.2 Influents/effluents scheme for hydrotreating of vegetable oil/GO 108 Fig. 4.3 Simplified diagram of sulphidation chart 109 Fig.4.4 Comparison of HDS activity of (CAT-A, CAT-B, CAT-C, CAT-D and CAT-E)

studied at different temperature 116

Fig.4.5 Comparison of HDN activity of CAT-A, B, C, D and E 116 Fig.4.6 HDS activity of CAT-E at different H2 pressure condition 117 Fig.4.7 HDS of 5, 10, 20 % JO in GO at three different temperatures using CAT-A 119

(23)

Fig. 4.8 Comparison of HDS activity of GO and 5% JO in GO using 120 developed catalysts

Fig.4.9 Comparison of HDS activity of GO and 10% JO in GO using 121 developed catalysts

Fig.4.10 Comparison of HDS activity of GO and 20% JO in GO using 122 developed catalysts

Fig.4.11 Density of hydrotreated GO using developed catalyst 123 Fig. 4.12 Comparison of density of hydrotreated GO by the developed

catalyst studied at different temperature conditions 124 Fig. 4.13 Density of feeds and liquid products obtained from hydrotreatment

of GO, neat JO, 5, 10, 20 % JO in GO at 370C using CAT-A 125 Fig. 4.14 Simulated distillation of hydrotreated GO, JO and 20 % JO A 129

in GO using CAT-

Fig. 4.15 Simulated distillation of hydrotreatment of GO, JO and

20 % JO in GO products from developed catalyst 130 Fig. 4.16 Mono, di, poly and saturates of hydrotreated products

from CAT-A, CAT-B, CAT-C and CAT-E 134

Fig. 4.17 Calculated Cetane Index of GO hydrotreated using different catalyst 137 Fig. 4.18 CCI of liquid product obtained from hydrotreatment of

5, 10, and 20% JO GO mixtures 137

Fig.4.19. Conversion of CO2 into methane 140 Fig.4.20 FT-IR spectra of liquid products obtained from

hydrotreated GO and 10% JO in GO using CAT-A and CAT-B 148 Fig. 4.21 FT-IR spectra hydrotreated 5, 10 and 20% JO products

obtained using CAT-E 149

(24)

Fig.4.22 FT-IR spectra of JO and hydrotreated JO products using CAT-E and CAT-A 150

Fig. 4.23 GC of fatty acid standard and hydrotreated JO using CAT-A and CAT-E 156 Fig.4.24 Carbon number distribution of hydrotreated JO using CAT-A, CAT-E and CAT-C158

Fig.4.25 Hydrotreated liquid products of CAT-A, CAT-B, CAT-C and CAT-E 159

Fig. 4.26 Reaction mechanism for hydrotreatment of JO 160 Fig.4.27 Predicted reactions of CO and CO2 with H2 during hydrotreating of vegetable oil 161

Fig. 5.1 Instrument used for grinding of PP and JL 167 Fig. 5.2 Physical form of Pea pod and Jatropha leaves before and after grinding 167

Fig. 5.3 Physical form of slurry of PP and JL and catalyst prepared from PP and JL 168 Fig. 5.4 Conventional and proposed method of preparation catalyst from biomass 169 Fig.5.5 Comparison of Ni and Mo in CAT-P, CAT-J, CAT-C and CAT-E by XRF 174 Fig. 5.6 Ash content of PP, JL, Carbonized PP, Carbonized JL, CAT-P and F) CAT-J 175

Fig.5.7 Physical form of Ashed CAT-P and CAT-J 176

Fig.5.8 TGA scans of PP, carbonized PP and boric acid treated PP, CAT-P 177 Fig.5.9 The DTG curves of PP, carbonized PP, and boric acid treated PP 178

Fig.5.10 TGA of JL, carbonized JL and CAT-J 179

Fig.5.11 XRD spectrum of PP, carbonized PP and CAT-P 180 Fig.5.12 XRD spectrum of JL powder, Carbonized JL, CAT-J 182 Fig.5.13 Multi point BET plot of PP and CAT-P by N2 adsorption-desorption isotherm 184

Fig.5.14 Multi-Point BET plot of CAT-J 186

Fig.5.15 FT-IR spectra of PP and CAT-P samples 188

(25)

Fig.5.16 FTIR spectra of JL and CAT-J samples 191

Fig.5.17 SEM images of PP and CAT-P 192

Fig.5.18 Different SEM images of JL and CAT-J 194

Fig.6.1 HDS activity of CAT-P and CAT-J in GO 199

Fig.6.2 HDS activity of CAT-P and CAT-J in 20% JO in GO 201

Fig.6.3 HDN activity of CAT-P, CAT-J in GO 202

Fig.6.4 JO conversion and diesel selectivity 205

Fig.6.5 HR-MS spectra of hydrotreated JO obtained from CAT-P and CAT-J 207 Fig.6.6 FT-IR spectra of Feed GO and hydrotreated GO obtained from CAT-P 210 Fig.6.7 FT-IR spectra of feed JO, hydrotreated JO, 20% JO in GO

and 30% JO in GO from CAT-P 211

Fig.6.8 FT-IR spectra of JO, hydrotreated JO and 20% JO in GO from CAT-J 212

Fig.6.9 Density of hydrotreated GO, JO and 20% JO using CAT-P and CAT-J 214 Fig.6.10 Cloud and Pour point of hydrotreated JO obtained from developed catalysts 219

Fig.6.11 Cloud and pour point of JO images obtained from optical signal vs. temperature 219

(26)

LIST OF TABLES

Table No Title Page No

Table 2.1 EU fuel specifications for sulfur content 12

Table 2.2 Typical oxygen compounds in Petroleum fractions 23 Table 2.3 Fatty acid composition of various vegetable oil 25 Table 2.4 Typical characteristics of gas oil, vacuum gas oil and vegetable oil 26 Table 2.5 BET surface area of different supports 37

Table 3.1 Basic properties of Activated Carbon (AC) 53

Table 3.2 Basic properties of used tea leaves 54

Table 3.3 Heating rate used for carbonization of tea leaves 56 Table 3.4 CHNS, Moisture and ash of AC, CAT-A and CAT-B 59

Table 3.5 Mineral matter of AC 60

Table 3.6 Crystallite size of CAT-A and CAT-B 63

Table 3.7 BET surface area, pore radius and Iodine number of AC,

CAT-A and CAT-B 66

Table 3.8 FTIR absorption peaks for AC, CAT-A and CAT-B 68 Table 3.9 Carbon Yield, Iodine number and BET surface area of

AC obtained from boric acid treated tea leaves 78

Table 3.10 Physical properties of CAT-E 82

Table 3.11 Elemental composition of used tea leaves and CAT-E 94

(27)

Table 3.12 CHNS analysis of tea leaves, carbonized

tea leaves and CAT-E 95

Table 3.13 Ash content of AC, tea leaves, carbonized leaves,

boric acid treated tea leaves and CAT-E 96

Table 4.1 Properties of JO and GO 105

Table 4.2 Fatty acid composition of JO 106

Table 4.3 Reaction conditions used for catalyst evaluation 110

Table 4.4 Properties of JO+GO mixtures 118

Table 4.5 Product densities of 5, 10, 20% JO in GO

using developed catalyst at 370◦C 125

Table 4.6 Sim TBP of liquid products obtained

from hydrotreatment of GO 127

Table 4.7 Sim TBP of hydrotreated GO at different temperature and

Pressure conditions using CAT-E 128

Table 4.8 SimTBP results of liquid product obtained from hydrotreatment

of 5, 10, and 20% JO in GO using CAT-E 131

Table 4.9 EURO specification for Diesel fuel 132 Table 4.10 Mono, di, poly and saturate content hydrotreated GO 133

Table 4.11 Composition of gaseous products of hydrotreated GO

using developed catalysts 139

Table 4.12 Gaseous product composition of hydrotreated JO

from developed catalysts 141

(28)

Table 4.13 Composition of the gaseous products of hydrotreatment of

GO, 5, 10, and 20% JO in GO using developed catalysts 142 Table 4.14 GC-MS results of liquid product of hydrotreated GO 145 Table 4.15 HR-MS analysis of hydrotreated 20% JO in GO 146 Table 4.16 Pour and cloud point of hydrotreated JO, GO and JO+GO 153

Table 4.17 HR-MS of hydrotreated 155

Table 4.18 SimTBP analysis of hydrotreated JO using the developed catalyst 159

Table 5.1 Description of the catalyst prepared from PP and JL 169

Table 5.2 CHNS analysis of PP, JL and CAT-P and CAT-J 171

Table 5.3 Mineral composition of PP and JL 172

Table 5.4 Metal content in CAT-P and CAT-J 173

Table 5.5 Average Crystallite size of PP, JL and CAT-P and CAT-J 183

Table 5.6 Surface properties of JL derived Carbon and CAT-J 186

Table 5.7 Physical properties of PP and CAT-P and CAT-J 187

Table 5.8 FTIR absorption peaks for PP, Carbonized PP and CAT-P 190

Table 6.1 Properties of JO and GO 198

Table 6.2: Simulated distillation of hydrotreated of GO, JO and 20% JO in GO using CAT-P and CAT-J 203 Table 6.3 SimTBP of hydrotreated JO obtained using CAT-P CAT-J

and its comparison with other catalyst 204 Table 6.4 Comparison of gasoline and diesel obtained from hydrotreatment

of JO using CAT-P, CAT-J with other developed catalyst 205

(29)

Table 6.5 HR-MS results of hydrotreated JO obtained from

CAT-P and CAT-B, CAT-E and CAT-C 207

Table 6.6 FT-IR absorption peaks of GO and hydrotreated GO

obtained using CAT-P and CAT-J 213

Table 6.7 Composition of gaseous products obtained from hydrotreated

JO using CAT-P and CAT-J 215

Table 6.8 Carbon number distribution of hydrotreated JO obtained using

CAT-P and CAT-J and comparison with CAT-B, CAT-E and CAT-C 217

(30)

ABBREVIATIONS

VO Vegetable Oil

JO Jatropha curcas Oil

GO Gas Oil

HDS Hydrodesulphurization

HDN Hydrodenitrogenation

HDO Hydrodeoxygenation

HDA Hydrodearomatization

VGO Vacuum gas oil

TL Tea leaves

PP Pea pod

JL Jatropha curcas leaves

AC Activated Carbon

CAT-A Co-Mo/Activated Carbon

CAT-B Ni-Mo/ Activated Carbon

CAT-C Ni-Mo/ Al2O3

CAT-D Co-Mo/ Al2O3

CAT-E Ni-Mo/Tea leaves

CAT-P Ni-Mo/Pea pod

CAT-J Ni-Mo/Jatropha leaves

MFU Micro down flow reactor

LHSV Liquid hour space velocity

XRD X-ray diffraction

XRF X-ray fluorescence

TEM Transmission electron microscopy

SEM Scanning electron microscopy

(31)

EDX Energy dispersive X-ray spectroscopy

TGA Thermogravimetric analysis

DTG Differential thermal analysis

BET Brunauer-Emmet-Teller

TAN Total acid number

DMDS Dimethyl disulphide

References

Related documents

Therefore, EEMF fingerprint distribution indicates that heavy oil, like diesel and 2T oil, contains mostly higher membered ring PACs a nd lighter oil, like kerosene

The yield of jatropha oil methyl ester was about 97% .The properties of biodiesel depends on the nature of the vegetable oil to be used for preparation of biodiesel and if the

“India’s Premier Oil & Gas “Navratna” Company Engaged in the Exploration, Development, Production and Transportation of Crude Oil and Natural

In this venture Steam Distillation was utilized to concentrate oil from distinctive plant materials like eucalyptus leaf, curry leaf, hibiscus leaf, marigold blossoms, rose

Brake thermal efficiencies at all load conditions are lower as compared to that of diesel fuel due to the lower calorific value of waste plastic oil, exhaust gas

Total petroleum hydrocarbons of oil sludge, light crude oil and heavy crude oil, degradation was studied for a period of thirty days using microbial strains

In the award ceremony held on 21.09.2018 at Zaloni Club, Duliajan, Shri Utpal Bora, CMD, OIL received the QHSE certificate from Shri Varadaraj Salian, Area Manager – Oil &

However it cannot be used directly in a diesel engine due to high viscosity, low calorific value and corrosion of components.. In order to mitigate these problems it has to