• No results found

The Radiative Transition Rates of Nd <sup>3+</sup>in LaF<sub>3<sub>

N/A
N/A
Protected

Academic year: 2023

Share "The Radiative Transition Rates of Nd <sup>3+</sup>in LaF<sub>3<sub>"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

The radiative transition rates o f Nd*'*' in LaFs

H. Jagannath and D. Ramaohandba Rao Indian Institute of Technology, Kanpur

AND

P. Vbnkatbswablu

TIerzherg InsUtufe of Astrophysics, National Research Council of Canada, Ottawa-KIA O'RiS, Canada

(Received 5 May 1977, revised 22 August 1977)

Tho radiative transition rates o f excited electronic states o f Nd®*^

(upto 30000 cm~^) in LaFg have bei>n calculated for the first time using tho Judd-Ofolt’s theory. The energy level positions estab- Ushod, recently, in our Laboratory together with the earlier reported values of intensity parameters have been used in these calculations.

The c?alculatod radiative transition rates are compared with the reported decay rates o f some of the states. A Table of reduced matrix elements is also included.

Indian J. Phys,

52ttf 34-^6 (1973)

1. Introduction

Tho study o f the energy transfer processes and tho relaxation rates from the excited states of the rare earth ions in single crystals has aroused considerable interest in view of the observation o f a number o f laser transitions. The advent o f powerful lasers has brought out elegant experimental techniques for the study o f both radiative and non-radiative relaxation processes. Recently, studies in our laboratory l\avo established the energy level scheme o f Nd*"*^ in LaFg upto 30(X)0 cm~^ from absorption and laser excited fluorescence spectra. In this paper, Wo report the calculations of radiative transition rates from the excited electronic levels of Nd®*^' using these level positions.

Optical spectra o f rare earth ions arise predominantly from electric and magnetic dipole transitions. The magnetic dipole transitions are parity allowed in the lowest configuration 4 /^ while tho electric dipole transitions are parity f<irbidd(ui. The transitions become allowed duo to tho mixing o f the opposite parity states from the higher configurations into the states of tho configuration 4 /^ . Judd (1962) and Ofolt (1962) have shown that the probability o f electric dipole transitions betwtH^u electronic states of the rare earth ions can be expressed in terms of a small number of intensity parameters. These parameters include tho effects of tho configurational mixing o f the electronic states, and tho strength o f tho crystal field interaction. Good agreement between the experimentally observed spectral intensities and intensities calculated from tho above theory,

34

(2)

has been obtained in a number of spectral intensity studies o f the rare earth ions, both in solutions (Carnal et al 1965) and in the crystals (Knipke 1966, eber 1967, 1968, Weber et al 1973). In addition, the intensity parameters have been used to calculate the radiative transition rates from the electronic states.

In this paper the radiative transitio^ rates for a number o f excited electronic states o f Nd*+ in LaF3 are calculated the first time using Judd-Ofelt’s theory.

The transition probabilities for the ra|Uative transitions have been calculated previously, only for the level in (Weber 1968), YaAljOu (Krupke 1971)

YAIO3 (Weber & Varitimos 1975)| Most o f the interest in the electronic state has been due to the obser'^ation o f stimulated emission orginating

in this state. !

The absorption and fluorescence ap|ctra o f Nd®+ in LaFg have been reported previously. The energy level assignm^ts and positions have been well estab­

lished upto 24000 cm -i from the studies o f Caspers et al (1965). This has been recently extended to 30000 orn'i in our laboratory by Kumar et al (1976). The intensity parameters required for the calculation o f the transition probabilities have been reported previously by Krupke (1966) from the measurement o f the integrated absorption spectrum. The results from the above studies—^the level positions and the intensity parameters, have been used for the calculation of the radiative transition rates in the present work. These radiative transition rates are of utmost importance in understanding various nonradiativo processes such as multiphonon and ion-ion interaction relaxation from the observed decay rates o f excited states.

The radiative transition rates o f Nd^+ in LaF^

35

2. Thboby

The optical spectra o f rare earth ions in crystals arise due to the 4 /^ electrons which are shielded b y the shells resulting in a weak interaction with the environment. The unperturbed (free ion) eigen functions o f the ion are obtained from the diagonalisation o f the combined spin-orbit and electrostatic energy matrices including the configuration interaction. The resulting states can be written as a linear combination o f the Russel-Saunders states \f^ocSLJ>

\fN{aSLJ)> = S C{a8L)\fN(a8LJ>

•SL (1)

where C(aSL) are the intermediate coupling coefi^ients. The J state mixing caused by the crystal field interaction is neglected in this approprimation. The different electronic states arising from the 4 /^ configuration are o f the same parity resulting in the magnetic dipole and electric quadrupole transitions which are parity allowed whereas the electric dipole transitions are parity forbidden.

The transitions beooine allowed due to ^n admixture o f the states o f opposite

(3)

parity from higher configiirationH. This is brought about b y the interaction of lattice phonons or through the odd order terms in the expansion of the crystal field p )tontiaJ. Explicit calculations of the transition probabilities involves a summation ov(^r a large number o f states o f excited configuration. Following Judd (1962), Ofelt (1962) and W(^ber (1967), the radiative transition probability for (jlootrie <Ui)oJ(* transition between the states \f^(cXASL)J> and l/-^ (a % 9 'i')J '>

tian 1)(^ writt(‘n as

Aea\Fioc.^jL)JJ^(oc\S'L')J']

^ 047TW{Uy^2J + })~^Xed^ 1 <F{ocSL)J\\U^WfN{oc'8'L')J'>\^ ... (2) whe,r<^ V (in cm-^) is the mean frequency of transition, £2^ 8*re the intensity para- met(U*s whi(?h inoliuby the int(^grals involving the wavofimetioons of the excited cordigurations and Xed is the correction factor for tlie refractive index n o f the TUfidium given by (Weber 1966)

Xed ^ + 2 ) ^ 1 9 . ... (3)

Thfi matrix (d(^ments of C/x are given by

<f^ccSLJ \\U^\\f^x'S'L'J'> --={—)S+L'ij+A «(^ f^ f')f(2 ./+ l)(2 J '+ l)]l.

,J J ' A ,

\r, . 1 < / ^ a « W l l F a ' - S ' £ ' > ... (4) L L S

wUiclx aro ovahiatwl iishif; standard tables.

Tlw degemoraey factor (2 J + 1 ) appears in tho oq. (2) following tho assump­

tions that all tho stark compouonts o f tJio initial J multiplet are oqually p.ipulatod m tho ca,s« of absorption and that they have equal probability for transition to components of the lower J multiplot in the case of emission. This assumption is not strictly valid in the case o f Nd*+ in L a i’, as can be seen from ho o n jg y separations o f tho stark components o f the J multiplets and the intensities of the transitions from the stark components o f tlio initial J multiplet to the d.ftorent terminating levels in the fluorescence spectra. However, in

. ’ ^ “ particular electronic state,

t v> oontubutions from the transitions to the stark components o f all the lower probabilities of tho different stark components.

Tho transition probability for magnetic dipole transition is given by Amal(acSL)J,{x'S'L')J'] = 64wM(3A)->(2J-f

36 Jagannath, Ramachandra Rao and Venkateswarlu

(4)

The radiative transition rates o f in LaF%

whore M is tho magnetic dipole operator given by

M 2mc

(L+2S).

37

(6) The matrix elements for tho magnetic dipole operator and the correction factor Xms are given by Weber (1967).

The elcwtric quadmpolo transitions l\|ive very .small transition probabilities (Weber 1967) and hence are not considei^.

3. Results

The total radiative transition rate f4>m an electronic state \f^{oc8L)J> is the sum o f the transition probabi]itio>s tp all the lower states • The contributions from the calculated i^ing eqs. (1), (2) and (4). The inter­

mediate coupling wavefunctiona obtaine4 for PbMo04 : Nd**^ b y Minhaa (1972) have been used in tho calculations. This is justified as tho wavefjunctions of the ion do not vary much from host to host in the case o f weak crystal field interaction (Wong 1961). Tlu^, rofractive index o f LaFg has boon measured by Wrick (1966) as a function o f wavol(Uigth. Tho reported intensity parameters Qx’s for Nd8»- in LaFg are (Krupke 1966) Qg = (0‘35±Oa4)xlO~2o,

= (2*57±0-36) X 10“ 2o and ^ (2-5±0*33) x 10“ 2«.

The results o f the calculations arc shown in tables 1-3. Tho elements of the matrix for different electronic states are given in table 1. The same matrix elements can bo uBvd for the calculation o f oscillator strengths and transi­

tion rates for Nd^+ in any host with weak crystal field interactions. Table 2 gives the calculated electric dipole transition rates. The contribution due to the magnetic dipole transitions is found to be negligible. Table 3 gives the total transition rates o f the different electronic states.

Table 1. Roduetd Matrix Elements of (/^ between i.hc electronic States o f Lal^3 : Nd«^-

\(aSL)J > » |(a'^'JD')J' > « \\<\m\>\^

3/2 (i?) 9/2 (Z) 0 0*236010 0*068370

11/2 (F ) 0 0*145165 0*408664

13/2 (X) 0 0 0*016456

16/2 (TT) 0 0 0*027666

5/2 (S) 9/2 (Z) 0000822 0*236129 0*397256

11/2 (F ) 0 0*169306 0*004782

13/2 (X ) 0 0 149698 0*398647

16/2 (W) 0 LO 0*232400

9/2 {S) 9/2 (Z) 0009287 0*007409 0*116417

11/2 (F ) 0003930 0*010929 0*166466

13/2 (X ) 0029124 0*006662 0*115300

16/2 (IF) 0 0*053088 0*105894

(5)

T a b le 1 (o o n td .)

38 Jagannath, Bamachandra Rao and Venkateswarlu

l(aSE)J > « t <lir/^ll> P ( <IIU*II> |» 1 <||17«((>

3/2 (A) 9/2 (X )

11/2 (K ) 13/2 (X ) 16/2 (IT)

0 0 0 0

0-002497 0-000002 00

0-233763 0-212483 0-298983 0-331718 7/2 (A) 9/2 (X )

11/2 (X ) 13/2 (X ) 15/2 (TT)

000059C 0001173 0 0

0-028662 0-103642

0- 326662

1- 604698

0- 432879 0-086261 0-000106

1- 866581

9/2 (B) 9/2 (X ) 11/2 (X ) 13/2 (X ) 15/2 (IT)

3/2 (JS)

0*000894 0 001636 0 002023 0 0

0-008849 0-036431 0-216276 0-691838 0-008219

0-041361 0-222624 0-512944 0-461016 0-111722 1 1 / 2 ( 0 9/2 (X )

11/2 (X ) 13/2 (X ) 16/2 (IT)

3/2 (B) 9/2 ( O 6/2 (B)

0*063747 0*000176 0*003266 0*088340 0 0*071413 0

0-042386 0 0-015061 0 0 6 2 2 2 0 0-000152 0-004761 0-002216

0-033021 0-009227 0-004314 0-000002 0-006210 0-109491 0-014162 6/2 (D ) 9/2 (X )

11/2 (X ) 13/2 (X ) 16/2 (IX) 3/2 (B ) 9/2 (B) 5/2 (B) 3/2 (^ ) 7/2 (^ )

0*667889 0 0 0 0*486722 0*001718 0*023796 0*000302 0*016662

0-378567 0-295641 0-034341 0 0-016156 0-001026 0-000333 0-182672 0 079016

0-029309 0-096637 0-047786 0-004424 0 0-048669 0 0 0-179863 7/2 (JO) 9/2 (X )

11/2 (X ) 13/2 (X ) 16/2 (IF) 3/2 (B) 9/2 (B) 5/2 (B) 3/2 (X ) 7/2 (X) 9/2 (fl) 1 1 / 2 ( 0

0*014416 0*364989 0 0 0*033708 0*036127 0*231789 0*000434 0*111392 0*000019 0*012192

0-146782 0-046046 0-071324 0-086664 0-019616 0-000933 0-008105 0-002472 0-051190 0-002402 0-001012

0-022397 0-012174 0-029624 0-053318 0 0-441739 0-036670 0 0-010739 0-000380 0-366649

7/2

(E) 9/2 (Z ) 11/2 ( D 13/2 (X ) 15/2 (IF) 3/2 (R) 6/2 iS) 2(53/2 (A ) TISi{A) 9/2 (B ) 11/2(0)

0 006306 0-707933 0 0 0-066608 0-296911 0-014160 0-001461 0-191776 0-031106 0-018114

0-196238 0-198814 0-133706 0-000027 0-038318 0*000444 0-002661 0-209318 0-080624 0-174266 0-002124

0-066286 0-012716 0-068060 0-104446 0 0-126826 0-076966 0 0-002266 0-312663 0-219279

(6)

0191 00*

0 oo f^ so oe

= |^

6 12 9 t*

0 0 I0 0S 8I 0

mo xo

-o 00 99 L0

0 0 no or st

0 %L9ZW0

0 68 00 00

*0 98 L8 00 0

91 80 00 -0 O O- !^S 0 8=

O

^f8 90 0*

0 99 91 00

*0 tl€

96 0- 0 X -o Z9- mo 0L oe SZ

69 90 01

*0 ZL L9 Z0 -0

68 IS 00 -0

99 90 L0 -0

e i^

O fO O -O 00 06 80 -0

Of^

fZ O-0

90 18 10 -0 00 90 00 -0

mi

^o o- 0

16 89 90-0

t0 60 Il

-0.0 60 iz 69 om t0

-0 98 00 00

0 -O 81 O OO L9 O tO t0

0 66 9=

10 0-0

09O Z.0 0-O

L0 9X tO -0

00 16 90 -0

le tT OO

-O io oL te

-o 1 ^6

^ 09 0 -0 it ms

-o 9 ^8 1 ^9

1 -0 10 09 91 -0

00 89 60 -0 9tZ.000 0 fl- 90 90 0

08 10 00 -0

OiOOtl- 0

60 16 80

-0 X0 88 0^

0 -0 01 69 89 11 69 00-0

9W 80 00

99 09

^0 -0

10 09 80 -0

99 80 00

*0 16 8^

60 -0

ISW IO O -0 10 18 19

90 00 00 -0

00 1^

00

*0 O -0 O 0 O O lfO ltOO O 00 01 00

0 -0

01 90 10 -0

08 00 00 -0

18 00 00 -0

81 90 t0 -0

^ 1^

1 88

^ 0- 0 0 -0-0 -0 00 O-O 00 ^0 10 10 09 llllO 00 09

0 0 0^ 80 09 0 0 -0 00 10 t8 16 00 00 -0

96 00 00 -0

61 00 00 -0

000 1 lO -O 00 00 91 -0

91 98 00

-0 10 11 11

-0-0 10 98 98 09 00 01 -0

10 91

00-0 l 1 It

^0- 0 -0 00 8t 00

80 19 91 -0

86 81 t0 -0

90 99 1'l

-0 00 00 €1

-0 tC 681 0-0

80 99 01 -0

909^10*0 61 99 10 -0

61 91 00

-0 10-0 06 19

01

^0 90 -0

lt 69 01 -0

f0 09 90 0

10 9t 08 -0 o-o O-O 90 90 ^ll 19 lOno 08 -0

091000*0 lOflOO-0 60 60 10 -0

911000*0 0 OO lO OtO

89 00 00

-0 10 10 10

-0 88 19 10 -0

18 81 00-0

88 19 10 -0

89 61 00 -0

O 0

0 0

0 0 0 0 -0 00 00 00

0 0

0 o

0 0

81 01 10 -0

09 00 00 -0

90 00 00 -0 0

€0 10 10 -0-0 100 190

09 t 100 -0

11^

06 61

-0 lO lll If^

0 et oo oo o

60 08 90 -0 0 O -0 10 06 98

i8 90 90

-0 oo oo po

-0 i

^9 88 01 -0

J9 10 00 0-0

fB ig eio

-o 1-0 80 00 58

^8 08 19 -0

1880600-0

;0 09 08

t-0 ?

0 '

0 06 0^ 89 0

91 01 01

-0 O O O fO l^O

0 K d)

/6 o (ff >

/l ziL ) (a

(a ) 0/9

io ) zl ii zif (a)

i /iiz ) z (F) o (F

(S) zif i

(S ') zl9

i s)

0/9 ) 0/0 (ff (M ) z l9 1 o/o ) (X

i u zl i) (J

(Z ) 0 /6

id ) 0/6

id )

I z

l

ia )

I z

l

i a)

0/9 o

i o)

/ii zif ) ia

i

(F) o/l

(F ) O /O

(S ') 0/6

is ) 0/9

ia ) zi z

iM ) 0/9

1 o/o (X)

i O/l ) iA

l (Z ) 0 /6

i a)

o

/l /ix/6 0/9 o ) 0

i o)

(ar

i a)

(F )

I z

l

iv ) zi z

is ) 0/6 ) is

0/9

i a)

z Iz

) iM

0/9 1 /0 ) 0 (X 1

iA ) O/t l

(Z ) 0 /6

i a)

0/1 (c r) 0/9

( -

) 0 9

/1 [

ia ) zlQ

iv )

I z

l

iv ) z iz

is ) Zl6

is ) 0/9

ia ) zi z

iM ) 0 /9 1

(x ) 0 /0 1 ll )Z iA l

(Z ) 0 /6

(J) 0/9

i o)

0/9 1

(£>

) 0 /6

id 0/6 )

sl<

llo /lll

>^

cK IU /ll l>

l I< b

II /3 c

II>

I

»<

/jr (.X S'.»

v <r

)l

i 'is v )\

m

( p^

juo o) I a jq -BX

+

P z

S[ j

9a

%fo

%'p njt

(7)

Table 1 (contd.)

40 Jagannath, K am achandra R ao and V enkatesw arlu

\{olSL)J:.

1/2(1)

3/2 (K )

6/2 (/>)

3/2

(Z)

(1/2 (^ ) 11/2 (Y ) 13/2 (X ) 15/2 ( IV) 3/2 (Ji) 6/2 (^S') 9/2 (.S) 3/2 (^ ) 7/2 M ) 9/2 (B) 11/2(0) 5/2 (D) 7/2 (D) 7/2 9/2 (F ) 16/2 (Z) 13/2 ( y ) H / 2 (X) 9/2 ( W) 3/2 (i?) 6/2 (.V)

»/2 (.V) 2/2 (A ) T/2(A) 9/2 (B) n / 2 (O) 6/2 (/>) 7/2 (i)) 7/2 (B) 9/2 (i?*) 16/2 «7) 9/2 ((7) 16/2 (^ ) 13/2 (F ) 11/2 (X) 9/2 ( JF) 3/2 (B) 6/2 (.V) 9/2 (B) 3/2 (^ ) 7/2 (^ ) 9/2 (B) 11/2 (C)

6/2 ( B ) 7/2 (B ) 7/2 9/2 (i?’) 16/2 (O)

9/2 (O) 16/2 (Z ) 13/2 (F ) 11/2 ( X)

9/2 (W) 3/2 (B) 5/2 iS) 0/2 (B) 3/2 U )

*7/2 ( 4 ) 9/2 (B)

O 0o 0 0-000206 0006411 0 0016897 O 0 0 0033383 0 0 0

0 0

0 0 0 0007862 0 0-014270 0-004620 0O 0064302 0-009867 0-007808 0 O0 0-000107 0 O 0 0-015683 0-210868 0-238226 0-364042 0-163727 0-083073 O 0-024648 0*169229 0-108398 0-488063 0 0-104801 0 0 0o 0*046376 0-060691 0 0*213622 0*079793 0

0-049422 (»O o 0 0 0-077942 0 0-020034 0*004730 O 0 0-009808 0-001997 0-013812 0-006063 0-030597 O 0 0 0-008667 0*030154 O 0-003202 0-032412 0*000280 0*000088 0-002969 0-010509 0*056218 0 0*139030 0*077617 0-330964 0-658878 0 0-172281 0-036514 0*193321 0-002098 0-069766 0*213106 0-001783 0*000046 0*065364 0*006186 0*004680 0 0-000002 0*267462 0*408688 0 0 0 0*204079 0-028688 0 0-016928 0*181263

O 0-000288 0-000034 0 0 0 0 0O 0 0*163663 0 0 0 0 0*001208 0-001066 0*001829 0*003611 O 0 0-064769

0O 0-052782 0*102877 0 O 0 0-064885 0-336212 0*137860 0*026431 0-019464 0*000063 0*038843 0 0 0-022107 0 0*000064 0*001612 0*026936 0 0*039626 0-106823 0-163776 0-004980 0*066833 0-016666 0-002636 0-026826 0*008624 0 0 0*004820 O0 0*001724

(8)

The radiative traneitum rates o f in L a t*a 41

Table 1 (contd.)

3/2 ( i )

11/2 ( L )

1/2{ L )

15/2 {L)

11/2 (C) 7/2 (/>) 6/2 (Z>) 7/2 (J5) 9/2 (J") 15/2 (O) 9/2 (O) 15/2 (Z ) 13/2 (V ) 11/2 (X) 912 (W) 3/2 (/?) 5/2 (S ) 9/2 (-S) 3/2 ( 4 ) 7/2 ( 4 ) 9/2 (B ) 11/2 (C) 5/2 (X>) 7/2 (D) 7/2 (B) 9/2 (B) 15/2 ((?)

9/2 ( « ) 15/2 (B) 1 3 /2 (1 ') 11/2 (X) 9/2 (IT) 3/2 (B) 5/2 (-S) 9/2 (B) 3/2 ( ^ ) 7/2 ( 4 ) 9/2 (B) 11/2 (C) 5/2 (B ) 7/2 (B ) 7/2 (B ) 9/2 (B) 16/2 ((?) 9/2 (G) 15/2 (B) 13/2 (B ) 11/2 (X )

9/2 ( 3/2 (B ) 5/2 (B) 9/2 (B) 3/2 (A ) 7/2 (X ) 9/2 (B ) 11/3 (O) 6/2 (B ) 7/2 (B ) 7/2 (B) 9/2 (B) 15/2 (G) 9/2 (G)

0 0-047342 0-011362

0-810622 0-000815 0

0-540389 0-049212 0

0 174924 0-021274 0

0 0-000181 0-091548

0 ' 0 0-001432

0 0-001109 0-034816

0-000000 0-023428 0-012961

0-0004(18 0*000480 0*000597

0-000125 0*008380 0-000862

0-002019 0-002473 0-002906

0 1 0-000032 0-004094

0 1 0-001043 0-004965

0 -1 8 3 3 ^ 0-218633 0-401612

0 ? 0-004804 0*000439

0-004387 0-014901 0-006100

O-O412I2 0-040065 0-009703

0-001 i l l 0-000017 0-072092

0 0-000142 0*00247

0-032672 0-089895 0-067410

()-015226 0-047380 0-050825

0-000181 0-012152 0-016909

0-269737 0-004652 0-168627

0-058168 0-002408 0*149186

0 0-361777 0

0-018897 0 0

0-013987 0 0

0 0 0

0-000041 0 0

0-055448 0 0

0 0-015479 0

0-088360 0 0

0 0-182188 0

0 0*036728 0

0-001371 0 0

0-326119 0 0

0 0-018700 0

0 0-007785 0

0 0-000120 0

(» 0 0

0 0-001130 0

0 0-025690 0-015981

0-000343 0-005155 0-004105

0000100 0-007668 0-002950

0 00

0-003388 0

0-006269 0-010576

0 0-000175

00

0-399605 0

0-181588 0-001916

0 0-002290 0-044763

0 0-234367 0-170173

0-003053 0

0-151678 0

0-324103 0-005683

0 0-019678 0-348456

0 0*004159 0-166987

0 0 ‘ 166273 0-115140

0-062162 0-276361 0*109309

0 0-164363 0-281113

rrK« « r 7 KtetoB o f Nd»+ arc denoted on ly b y their J quantum num bers, H - - v . r . a » o o „ p l . « . S L J notation for these states is given m table 3.

(9)

Talilo 2. Calculated Electric dipole Transition for Different electronie states of LaFg : Nd®+

42

tTaganiiath, Ramachandra Rao and Venkateswarlu

l(aSL)J:: l(u'S'L')J'>

Transition rate in

sec”^ \{ol8 L )J > \{ol'S'L')J'>

Transition rate in

seo”^

3/2 {li)

5(2 (S)

9/2 iS)

3J2{A)

7/2 M)

9/2 {B)

11/2 (C)

«/2 (i>)

9/2(2))

9/2 (Z) 731 7/2 (X)

11/2 (F) 787

13/2 (X) 11

16/2 (IF) 8

9/2 (Z) 1349

11/2 (F) 228

13/2 (X) 378

16/2 (IF) 68

9/2 (Z) 166

11/2 (F) 136

13/2 (X) 64 9/2 (F)

16/2 (TF) 30

9/2 (Z) 964

11/2 (F) 640

13/2 (X) 429

16/2 (TF) 228

9/2 (Z) 933

11/2 (F) 244

13/2 (X) 241

16/2 (TF) 1206

9/2 (Z) 107

11/2 (F)

13/2 (X) 359

622 9/2 {G)

15/2 (TF) 463

3/2 (JR) 3

9/2 (Z) 186

11/2 (F) 14

13/2 (X) 19

16/2 (TF) 41

3/2 (i2) 1

6/2(5) 1

9/2 (5) 2

9/2 (Z) 2946

11/2 (F)

13/2 (X) 1612

219 16/2 ((?)

15/2 (TF) 7

3/2 (2?) 18

5/2 (5) 1

9/2 (5) 6

3/2 (4) 11

7 /2(4) 16

9/2 (Z) 752

11/2 (F) 330

13/3 (X) 204

15/2 (IF) 169

3/2 (JB) 4

5/2(5)

9/2 (5) 7

37 6/2(J)

3/2 (4 ) 1

7 /2 (4 ) 4

9/2 (Z) 1566

11/2 (F ) 1336

13/2 (X) 596

1612 {W) 193

3/2 (JR) 17

6/2 (5) 40

9/2 (5) 18

3/2 (4 ) 31

7/2 (4 ) 16

9/2 (5) 33

11/2 (C) 6

9/2 (Z) 476

11/2 (F ) 1436

13/2 (X) 1331

15/2 (TF) 1627

3/2 (JB) 67

5/2 (5) 32

9/2 (5) 42

3/2 (4 ) 32

7 /2 (4 ) 24

9/2 (5) 18

1 1 /2 (0 7

6/2 (/)) 2

7/2 (1>) 2

9/2 (Z) 245

11/2 (T) 13/2 {X) 16/2 (TF) 3/2 (2J) 6/2 (^) 9/2 (iS) 3/2 (^) 7/2 (^) 9/2 (JB) 11/2 (O) 5/2 (2>) 7/2 (2)) 9/2 (Z) 11/2 ( D 13/2 (X) 16/2 (TF) 3/2 (jR)*

5/2 (5 ) 9 /2(5) 3/2(4) 7 /2 (4 ) 9/2 (5) 11/2 (O) 5/2 (2)) 7/2 (D) , 9/2 (Z) 11/2 (T ) 13/2 (X) 15/2 (TF)

763 682 947 37 26 76 19 36 67 66 7 31 11 40 38 3 1 177 51 11 87 1 3 38 11 174 3

(10)

The radiative transition rates o f Nd^'*' in LaFt Table 2 (oontd.)

43

\{»8L)J> \{a'8'L')J’ >

Transition rate in

800”^ \{dSL)J> \{a'S'L')J'>

Transition rate in

seo~^

6/2(J)

1/2 (J)

3/2 (K)

6/2{ L )

Z I 2 { R)

9/2(5) 6/2(5) 3/2 (A) 112 {A) 9/2 (B) 11/2 (0)

6/2 (B) 7/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (Tf) 3/2 (B) 9/2(5) 6/2(5) 3/2 (^) 7/2 (^) 9/2 (B) 11/2 (C) 6/2 (B) 7/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F ) 3/2 (B) 6/2(5) 9/2(5) 3/2 (^) 7/2 (il) 9/2 (B) 11/2 (O) 5/2 (B) 7/2 (B) 7/2 (B) 9/2 (B) 16/2 (B) 9/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F ) 3/2 (B) 6/2 (5) 9/2 (5) 3/2 (X) 7/2 (X) 9/2 (B) 11/2 (0)

6/2 (B) 7/2 (B) 7/2 (B) 9/2 (B) 16/2 (B) 9/2 (B)

3

1

460

2

33 17 168 1 80 2336 10 1 0

1

4 366 9 74 12 261 4 9 232 810 36 60 0 43 403 7 14 214 187

11

6 7 60 74 62 2774 7711 11486 496 969 297 1109 196 360 668 60 6 192 113 169

2

n

3/2 (B)

11/2 (B)

1/2 (B)

9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F ) 3/2 (B) 6/2(5) 9/2 (5) 3/2 (X) 7/2 (X) 9/2 (B) 11/2 (B) 6/2 (B) 7/2 (B) 7/2 (B) 9/2 (B) 16/2 (B) 9/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F )

3/2 (B)

16/2 (B)

7/2(5) 3/2 (X) 7/2 (X) 9/2 (B) 11/2 (B) 6/2 (B) 7/2 (B) 7/2 (B) 9/2 (B) 16/2 (B) 9/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F )

3/2 (B) 6/2(5) 9/2 (5) 3/2 (X) 7/2 (X) 9/2 (B) 11/2 (B) 6/2 (B) 7/2 (B) 7/2 (B) 9/2 (B) 16/2 (B) 9/2 (B) 9/2 (Z) 11/2(7) 13/2 (X) 16/2 (F )

11666 13696 632 168 63 1474 226 166 168 798 196 226 281 61 104

22

0 489 12 81 37 10 14 1423 10 41 80 78

2

122 46

11

46 34 29476 170 100 0 0 106 208 137 2067 321

1

204

86

21 0 0 2 76 69 42

(11)

Tablo 2 (contd.)

44

Jagannath, Bamachandra Rao and Venkateswarlu

15/2 (A)

Transition

rate in \{xSL)J> \{ct'S'L')J'>

{x,SL)J Energy®

(in cm~^) Transition rate in sec"^

^^3/2 (-^)

^1^512

^Hq!2 {S) {A) {A) (B)

^Biii2 {C)

11417 12416 12579 13451 14099 15853

1537 2019 384 2624 2151 1644 262 (f>)

17260 4836

®(3*7/2 (i>) 1607

*Ojf2 (jB ) 19044 3841

(r) 19465 4994

^ ^ 1 6/2 (^)

21067 461

^ 9 /2 (G') 2853

(f)

23730 3085

^A'S/2 (/) 980

=^ 3,2 (if) 26189 2214

(ii) 26619

* ^ 3 /2 (/■-) 29742

*^UI2 W 28342 2534

^A;2 (i) 32897

*^ 15,2 (i) 2970

of tho S t e r k T i S u

gravity of ground state Stark S i ^ e t

Transition rate in

sec*"^)

:t;)/2 (It) 21 15/2 (Z) 6/2 (D) 3

fi/2 (-V) 0 7/2 (Zi) 205

7/2 (,V) 970 7/2 (Z7) 53

2/2 (A) 3 9/2 (Z’) 81

7/2 M) 65 16/2 (0) 64

»/2 (B) 436 912(0) 71

11/2(0) 391

Tal.k 3. Total ladiativo rat(s of tho ((liffei '*j)t

<;loctronio states of LaF3 :

(12)

A comparison of the calculated and observed radiative transition rates is possible only for the state ^r3/2(i?). This state is separated from the next state

®®i6/2(^) SOOO and hence, nonradiative multiphonon relaxation rate from this level can be neglected. The experimentally observed decay rate which is the sum o f the radiative and nonradiative transition rates is, thus, mostly due to radiativ(5 transitions in the case of state The reported decay rate, from the state is 1430 sec~^ (Asawa & Robinson 1966). This compares well with the calculated rate of 1537±200 sec” ^.’ The estimated error in the calculated rate is due to tlie error in tlie reported Values of fll^s which is 13%. The decay rates have not been reported for any dther state except the group o f states around 29000 em h* This group is admixture of five J states. ^©3/2,

^®i/2 ^J^d ^Li5/2 in the ascending order o f energy. The observed decay rate from this group is 3-45x10^ soc*f^ at liquid nitrogen temperature which includes the contribution from the mulflphonon transitions. The rate o f multi­

phonon transitions can be estimated fr<>m the energy gap rule (Riseberg & Moos 1968). This comes out to be M 5 x l 0 ^ sec““^ for this group. The contribution duo to the radiative transitions is, thus, 2*3x10^ sec“ ^ which is comparable to the calculated transition rates o f (2*97±0-39) X 10^ sec"^ and (2*66iO*35)'X 10^

fiec” ^ from the states J = ^I>3/2 and J = ^I>5/2- It is to be noted that the applica­

tion o f the Judd-Ofelt’s theory is not strictly valid foi the group L as the assumx>- tion that tre J mixing o f states is mvgligible, is not tru^. The agreement between the calculated and observed rates is fortuitous. But, in the case o f states which are well separated from the other states, the theory can l>c expected to give comparable lesults as has been observed by many others in diffeient systems (Weber 1968, Weber et al 1973). Alteinatively, the calculated radiative transi­

tion rates can be used to evaluate the nonradiative transition rates from the observed decay rates.

Re f b b e k c e s

Asawa C. K. & Robinson M. T. 1966 Phya. Rev. 141, 261.

Caspers H. H., Kast H. E. & Buchanan R. A. 1965 ./. Chem. Phya. 42, 3214.

Carnall W. T., Fields P. R. & Wybourne B. G. 1966 J. Chem. Phya. 42, 3797.

Judd B, R. 1962 Phya. Rev. 127, 150.

Krupke W. F. 1966 Phya. Rev. 146, 326.

Krupke W. F. 1971 IEEE J. Qvantum Electronica QE 7, 163.

Kumar U* V., Jagannath H,. Ramachandra Rao D. & Venkateswarlu P. 1976 Indian J. Phya.

50,90.

The radiative transition rates o f in LaF^

45

* The decay time of this group has been measured by us at six different temperatures using a pulsed nitrogen laser as the excitation source. This group has been observed to decay by both radiative and non-radiative processes whose rates are comparable. The experimental details as well as the discussion on the different non-radiative processes which contribute to the relaxation o f group L, will be published separately.

(13)

Minhas I. 8. 1972 Ph.D. Thesis. Indian Institute of Technology. Kanpur. India.

Nielsen C. W, & Koster 0. F. 1063 Spectroscopic Coefficidents for tiie jfl, d» andf’» eonfigwatioM (MIT Press Cambridge, Massachusetts).

Ofelt 0. S. 1962 .7. Ghem. Phys. 37, 611.

Rotonberg M., Bivens R., Metropolis N. & Wooten J. K. 1964 The 3-J and 6-j

Symboh

(MIT Proas. Cambridge. Massachusetts), Rweberg L. A. & Moos H. W. 1968 Phys. Bev.174,429.

WongE. y. 1961 J. Chem. Phys. 35, 544.

Wirick M. P. 1966 App. Optics 5,1966.

Weber M. J. 1967 Phys. Bev. 157, 262.

Weber M. ,T. 1968 Phys. Bev. 171, 28.1.

Weber M. .1. Varitimos T. E. & Motsinger B. H. 1973 Phys. Bev. B8, 47.

Weber M. J. & Varitimos T. E. 1976 J. Appl. Phys. 4 6 ,1191,

46 Jagannath, Bamachandra Rao and Venkateswarlu

References

Related documents

The calculated diumal variations of electron density, electron and ion temperatures (Figures 2b, 3b and 4b of Roble 1975) in F-region over Millstone Hill on March 23-24,

The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two Cu II atoms in each

feftfag =fT5.Ismg ??r3re.towrgtmto qwfif-Mcito&gt;,gc;dto jWJJJP tofatftr.Hmg.fefa.,tfl-3Rf fttpt.tm.to.fetowf W&lt;t&gt;l'ilffwttot wn?to-3mtog... jrtftdt«ft.3f.hi.ffrft

Daystar Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21.. Re-use and distribution is strictly not permitted, except for Open

Extending this idea along the series o f available oxides o f Molylwhmum and (tomparing [MO-01 mean amplitudes, it may lie saf(4y inferrtid that in thest^

While solving the secular equation \GF—AE\ = 0 using symmetry consi- doiations and vibrational frequencies, one is met with the diflSoulty that numbei' of force

The gross-structure multiplet analy.sis of As II lines has been made by A.. r^/.) that it vvDvS extremely difficult to sputter arsenic in a hollow-cathode

not from a specific symmetry of neutrino mass texture but fiom ladiative corrections We then follow the second appioach to cany out a detailed numencal