• No results found

Sum of Product of Reciprocals of Fibonacci Numbers

N/A
N/A
Protected

Academic year: 2022

Share "Sum of Product of Reciprocals of Fibonacci Numbers"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

SUM OF PRODUCT OF RECIPROCALS OF FIBONACCI NUMBERS

A Thesis Submitted in the Partial Fulfillment of the Requirements of Degree for

Integrated M.Sc.

In Mathematics

Submitted by

Kappagantu Prudhavi Nag Roll Number: 410MA5016

Under the Guidance of Professor G. K. Panda Department of Mathematics

National Institute of Technology, Rourkela

May 2015

(2)

Page | 2

CERTIFICATE

Dr. Gopal Krishna Panda

Professor of Mathematics May 11, 2015

This is to certify that the project report with title โ€œSUM OF PRODUCT OF RECIPROCALS OF FIBONACCI NUMBERSโ€ submitted by Mr. Kappagantu Prudhavi Nag, Roll No. 410MA5016, to the National Institute of Technology, Rourkela, Odisha for the partial fulfillment of the requirements of Integrated M.Sc. degree in Mathematics, is a bonafide research work carried out by him under my supervision and guidance. The content of this report in full or part has not been submitted to any other Institute or University for the award of any degree or diploma.

Gopal Krishna Panda

(3)

Page | 3

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my supervisor Professor G. K. Panda who has been a great mentor for me. I thank him for his suggestion for providing a beautiful problem in number theory.

I am grateful to Prof. Sunil Kumar Sarangi, Director, National Institute of Technology, Rourkela for providing excellent facilities in the Institute for carrying out research.

I am thankful to the Head, mathematics and professors of department for their valuable help during the preparation of this work.

There are no words to explain how grateful I am to my parents for all of their sacrifices and prayers that they made for me. I also like to thank my brother who helped me in this research and also gave a few ideas which helped me in successful completion of this project.

I also take this opportunity to thank all of my friends who helped me during the preparation of this work.

Place: Rourkela

Date: Kappagantu Prudhavi Nag

Department of Mathematics

National Institute of Technology Rourkela

(4)

Page | 4

ABSTRACT

Fibonacci numbers are the number sequences which follow the linear mathematical recurrence๐น0 = 0, ๐น1 = 1 and ๐น๐‘› = ๐น๐‘›โˆ’1+ ๐น๐‘›โˆ’2 ๐‘› โ‰ฅ 2. In this work, we study certain sum formulas involving products of reciprocals of Fibonacci numbers. Sum formulas with alternating signs are also studied.

(5)

Page | 5

TABLE OF CONTENTS

1. Notations ...6

2. Introduction ...7

i. Mathematics of Fibonacci Numbers ... 7

ii. Fibonacci Numbers with Negative Indices ... 8

3. Sum of Reciprocals of Fibonacci Numbers with Positive Indices ... 11

i. Order 2 ... 11

a. Non-Alternating Sum... 11

b. Alternating Sum ... 13

ii. Sum With Indices in A.P. ... 16

a. Non-Alternating Sum of Order 1 ... 16

b. Alternating Sum of Order 1 ... 16

4. Sum of Reciprocals of Fibonacci Numbers with Negative Indices ... 19

i. Order 1 ... 19

a. Non-Alternating Sum... 20

b. Alternating Sum ... 20

ii. Order 2 ... 20

a. Non-Alternating Sum... 21

b. Alternating Sum ... 21

iii. Sum with Indices in A.P. ... 22

a. Non-Alternating Sum of Order 1 ... 23

b. Alternating Sum of Order 1 ... 24

5. References ... 26

(6)

Page | 6

NOTATIONS

The following notations will be frequently used in this thesis.

๏‚ท ๐”ฝ๐‘ = โˆ‘ 1

๐น๐‘› ๐‘๐‘›=1

๏‚ท ๐”พ๐‘ = โˆ‘ (โˆ’1)๐‘›

๐น๐‘› ๐‘๐‘›=1

๏‚ท ๐”ฝ๐‘(๐‘Ž) = โˆ‘ 1

๐น๐‘›+๐‘Ž ๐‘๐‘›=1

๏‚ท ๐”พ๐‘(๐‘Ž) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›+๐‘Ž ๐‘๐‘›=1

๏‚ท ๐”ฝ๐‘โ„Ž = โˆ‘ 1

๐นโ„Ž๐‘› ๐‘๐‘›=1

๏‚ท ๐”พ๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘›

๐นโ„Ž๐‘› ๐‘๐‘›=1

๏‚ท โ„๐‘ = โˆ‘ 1

๐นโˆ’๐‘› ๐‘๐‘›=1

๏‚ท ๐•€๐‘= โˆ‘ (โˆ’1)๐‘›

๐นโˆ’๐‘› ๐‘๐‘›=1

๏‚ท โ„๐‘(๐‘Ž) = โˆ‘ 1

๐นโˆ’๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

๏‚ท ๐•€๐‘(๐‘Ž) = โˆ‘ 1

๐นโˆ’๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

๏‚ท โ„๐‘(0, ๐‘Ž) = โˆ‘ 1

๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

๏‚ท ๐•€๐‘(0, ๐‘Ž) = โˆ‘ (โˆ’1)๐‘›

๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

๏‚ท โ„๐‘(๐‘Ž, ๐‘) = โˆ‘ 1

๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘ ๐‘๐‘›=1

๏‚ท ๐•€๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘›

๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘ ๐‘๐‘›=1

๏‚ท โ„๐‘โ„Ž = โˆ‘ 1

๐นโˆ’โ„Ž๐‘› ๐‘๐‘›=1

๏‚ท ๐•€๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘›

๐นโˆ’โ„Ž๐‘› ๐‘๐‘›=1

๏‚ท โ„๐‘โ„Ž(๐‘Ž) = โˆ‘ 1

๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

๏‚ท ๐•€๐‘โ„Ž(๐‘Ž) = โˆ‘ (โˆ’1)๐‘›

๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž ๐‘๐‘›=1

(7)

Page | 7

CHAPTER 1 INTRODUCTION

Fibonacci sequence of numbers is one of the most intriguing number sequence in mathematics. The series is named after the famous Italian Mathematician Fibonacci of the Bonacci family. He is also known as the Leonardo of Pisa. The following problem proposed by Fibonacci himself gave birth to the sequence.

The Fibonacci Problem:

Suppose there are two newborn rabbits, one male and one female.

Find the number of rabbits produced in a year if [1]

๏‚ท Each pair takes one month to become mature

๏‚ท Each pair produces a mixed pair every month from the second month

๏‚ท All rabbits are immortal

Solution:

For convenience let us assume that the rabbits are born on January 1st and we need to find the number of rabbits on December 1st. The table below is used to find the solution of the problem.

From the above table it is evident that the number of rabbits at the end of the year are 144. If observed closely it is observed that the new number is equal to the sum of the previous two numbers.

MATHEMATICS OF FIBONACCI NUMBERS

The numbers in the bottom row are called the Fibonacci numbers. From the table a recursive relation is yielded as below

๐น๐‘› = ๐น๐‘›โˆ’1+ ๐น๐‘›โˆ’2 , ๐‘› โ‰ฅ 2.

where ๐น0 = 0 and ๐น1 = 1 [2]. Sometimes it is customary to start the Fibonacci numbers from ๐น1 instead of ๐น0. Then the initial two conditions become ๐น1 = 1 and ๐น2 = 1. With any of the above two conditions the series generated is the same.

No. of Pairs Jan Feb Mar April May June July Aug Sep Oct Nov Dec

Adults 0 1 1 2 3 5 8 13 21 34 55 89

Babies 1 0 1 1 2 3 5 8 13 21 34 34

Total 1 1 2 3 5 8 13 21 34 55 89 144

(8)

Page | 8 It is surprising that Fibonacci numbers can be extracted from Pascalโ€™s triangle. The above observation was confirmed by Lucas in 1876 when he derived a straightforward formula to find the Fibonacci numbers [1]

๐น๐‘› = โˆ‘ (๐‘› โˆ’ ๐‘– โˆ’ 1

๐‘– )

โŒŠ(๐‘›โˆ’1) 2โ„ โŒ‹

๐‘–=0

, ๐‘› โ‰ฅ 1.

In 1843 a French mathematician named Jacques Philippe Marie Binet invented a way to calculate the ๐‘›๐‘กโ„Ž Fibonacci numbers. If ๐œ™ =1+โˆš5

2 and ๐œ“ =1โˆ’โˆš5

2 then ๐น๐‘› = ๐œ™๐‘›โˆ’๐œ“๐‘›

โˆš5 [3].

The above formula shows an interesting aspect that the Fibonacci number can be written in terms of the golden ratio. Fibonacci numbers appear in many places in both nature and mathematics. They occur in music, geography, nature, and geometry. They can be found in the spiral arrangements of seeds of sunflowers, the scale patterns of pine cones, the arrangement of leaves and the number of petals on the flower.

FIBONACCI NUMBERS WITH NEGATIVE INDICES

The negative subscript of the Fibonacci numbers can be converted to positive subscript as indicated in [4]. The recurrence relation for the negative Fibonacci numbers is as follows:

๐นโˆ’๐‘› = ๐น2โˆ’๐‘›โˆ’ ๐น1โˆ’๐‘›, ๐‘› โ‰ฅ 2

The initial conditions for these numbers are ๐น0 = 0 and ๐น1 = 1. It is observed that the negative Fibonacci numbers have the same initial conditions as of the positive Fibonacci numbers.

Rabinowitz [5] stated that the alternating general summation of order 1 is given by

๐”พ๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= ๐”พ๐‘+๐‘Ž โˆ’ ๐”พ๐‘Ž.

We disprove the above identity using a counter example.

Now let us take ๐‘Ž = 3 and ๐‘ = 5 and find the value of ๐”พ๐‘(๐‘Ž).

โˆ‘(โˆ’1)๐‘›

๐น๐‘›+3

5

๐‘›=1

=โˆ’1

๐น4 + 1 ๐น5+โˆ’1

๐น6 + 1 ๐น7+โˆ’1

๐น8 ๐”พ8 =โˆ’1

๐น1 + 1 ๐น2+โˆ’1

๐น3 + 1 ๐น4+โˆ’1

๐น5 + 1 ๐น6+โˆ’1

๐น7 + 1 ๐น8

(9)

Page | 9 ๐”พ3 =โˆ’1

๐น1 + 1 ๐น2+โˆ’1

๐น3 ๐”พ๐‘+๐‘Žโˆ’ ๐”พ๐‘Ž= 1

๐น4+โˆ’1 ๐น5 + 1

๐น6+โˆ’1 ๐น7 + 1

๐น8โ‰  ๐”พ๐‘(๐‘Ž).

It can be checked that the identity for ๐”พ๐‘(๐‘Ž) is wrong when ๐‘Ž is odd and correct when ๐‘Ž is even.

Claim:

If ๐‘Ž > 0 then ๐”พ๐‘(๐‘Ž) = {๐”พ๐‘Žโˆ’ ๐”พ๐‘+๐‘Ž if ๐‘Ž is odd, ๐”พ๐‘+๐‘Žโˆ’ ๐”พ๐‘Ž if ๐‘Ž is even.

Proof:

๐”พ๐‘+๐‘Žโˆ’ ๐”พ๐‘Ž = โˆ‘(โˆ’1)๐‘› ๐น๐‘›

๐‘+๐‘Ž

๐‘›=1

โˆ’ โˆ‘(โˆ’1)๐‘› ๐น๐‘›

๐‘Ž

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› ๐น๐‘›

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

.

Case 1. ๐‘Ž is odd, ๐‘ is odd

๐”พ๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)+๐‘Ž+ โˆ’1 ๐น๐‘+๐‘Ž. ๐”พ๐‘+๐‘Ž โˆ’ ๐”พ๐‘Ž = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= 1

๐น1+๐‘ + โˆ’1

๐น2+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)+๐‘Ž+ 1 ๐น๐‘+๐‘Ž

= โˆ’ ( โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)+๐‘Ž + โˆ’1 ๐น๐‘+๐‘Ž)

= โˆ’๐”พ๐‘(๐‘Ž).

Case 2. ๐‘Ž is odd, ๐‘ is even

๐”พ๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)+๐‘Ž+ 1 ๐น๐‘+๐‘Ž.

๐”พ๐‘+๐‘Ž โˆ’ ๐”พ๐‘= โˆ‘ (โˆ’1)๐‘› ๐น๐‘›

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= 1

๐น1+๐‘Ž+ โˆ’1

๐น2+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)+๐‘Ž+ โˆ’1 ๐น๐‘+๐‘Ž

= โˆ’ ( โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)+๐‘Ž+ 1 ๐น๐‘+๐‘Ž)

= โˆ’๐”พ๐‘(๐‘Ž).

(10)

Page | 10 Case 3. ๐‘Ž is even , ๐‘ is odd

๐”พ๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)+๐‘Ž+ โˆ’1 ๐น๐‘+๐‘Ž. ๐”พ๐‘+๐‘Žโˆ’ ๐”พ๐‘ = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)+๐‘Ž+ โˆ’1 ๐น๐‘+๐‘Ž

= ๐”พ๐‘(๐‘Ž).

Case 4. ๐‘Ž is even , ๐‘ is even

๐”พ๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)+๐‘Ž+ 1 ๐น๐‘+๐‘Ž. ๐”พ๐‘+๐‘Žโˆ’ ๐”พ๐‘ = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= โˆ’1 ๐น1+๐‘Ž+ 1

๐น2+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)+๐‘Ž+ 1 ๐น๐‘+๐‘Ž

= ๐”พ๐‘(๐‘Ž).

โˆŽ

(11)

Page | 11

CHAPTER 2

SUM OF RECIPROCALS OF FIBONACCI NUMBERS WITH POSITIVE INDICES

The following notations for the alternating and non-alternating sum of ๐‘˜๐‘กโ„Ž order are available in[5].

๐‘†(๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘˜โˆ’1, ๐‘Ž๐‘˜ ) = โˆ‘ 1 ๐น๐‘›+๐‘Ž1๐น๐‘›+๐‘Ž2โ€ฆ๐น

๐‘›+๐‘Ž๐‘˜ ๐‘

๐‘›=1

๐‘‡(๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘˜โˆ’1, ๐‘Ž๐‘˜ ) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›+๐‘Ž1๐น๐‘›+๐‘Ž2โ€ฆ๐น

๐‘›+๐‘Ž๐‘˜ ๐‘

๐‘›=1

The sum ๐‘† is called the non-alternating summation of order ๐‘˜. The second sum ๐‘‡ is called the alternating sum of order ๐‘˜. In both the cases 0 < ๐‘Ž1 < ๐‘Ž2 < โ‹ฏ < ๐‘Ž๐‘˜โˆ’1 < ๐‘Ž๐‘˜.

ORDER 2

We consider first the problem of finding the following second order sums.

๐”ฝ๐‘(๐‘Ž, ๐‘ ) = โˆ‘ 1 ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

๐”พ๐‘(๐‘Ž, ๐‘ ) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

NON-ALTERNATING SUM

For ๐‘Ž > 0, Rabinowitz[5] got the following formula.

๐”ฝ๐‘(0, ๐‘Ž) = โˆ‘ 1 ๐น๐‘›๐น๐‘›+๐‘Ž =

{ 1

๐น๐‘Ž โˆ‘ ( 1

๐น๐‘+2๐‘–๐น๐‘+2๐‘–+1โˆ’ 1 ๐น2๐‘–๐น2๐‘–+1)

โŒŠ๐‘Ž 2โ„ โŒ‹

๐‘–=1

+๐•‚๐‘

๐น๐‘Ž if ๐‘Ž is odd, 1

๐น๐‘Žโˆ‘ ( 1

๐น2๐‘–โˆ’1๐น2๐‘– โˆ’ 1

๐น๐‘+2๐‘–โˆ’1๐น๐‘+2๐‘–)

๐‘Ž 2โ„

๐‘–=1

if ๐‘Ž is even.

๐‘

๐‘›=1

where ๐•‚๐‘= โˆ‘ 1

๐น๐‘›๐น๐‘›+1

๐‘๐‘–=1 . The above sum is called the non-alternating sum of order 2. The aim is to find an equivalent expression of ๐”ฝ๐‘(๐‘Ž, ๐‘). To do this we use the help of the following result.

(12)

Page | 12 ๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 1: ๐น๐‘œ๐‘Ÿ 0 < ๐‘Ž < ๐‘ ๐‘กโ„Ž๐‘’๐‘› ๐น๐‘ (๐‘Ž, ๐‘) = ๐น๐‘+๐‘Ž (0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐น๐‘Ž (0, ๐‘ โˆ’ ๐‘Ž).

๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“:We start from the right hand side of the equation and come to the left hand side.

๐”ฝ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”ฝ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ 1

๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Žโˆ’ โˆ‘ 1 ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘Ž

๐‘–=1 ๐‘+๐‘Ž

๐‘›=1

= โˆ‘ 1

๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= 1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + 1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1+ 1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘

= โˆ‘ 1

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

= ๐”ฝ๐‘(๐‘Ž, ๐‘)

โˆŽ By using the above theorem and the formula for ๐”ฝ๐‘(0, ๐‘Ž) stated by Rabinowitz [5] the expression for ๐”ฝ๐‘(๐‘Ž, ๐‘) is calculated.

๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 2: ๐ผ๐‘“ 0 < ๐‘Ž < ๐‘ ๐‘กโ„Ž๐‘’๐‘›

๐”ฝ๐‘(๐‘Ž, ๐‘) = { 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘+๐‘Ž+2๐‘–๐น๐‘+๐‘Ž+2๐‘–+1โˆ’ 1 ๐น๐‘Ž+2๐‘–๐น๐‘Ž+2๐‘–+1)

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

+๐”ฝ๐‘(๐‘Ž, ๐‘Ž + 1)

๐น๐‘โˆ’๐‘Ž if (๐‘ โˆ’ ๐‘Ž)is odd,

1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘Ž+2๐‘–โˆ’1๐น๐‘Ž+2๐‘–โˆ’ 1

๐น๐‘+๐‘Ž+2๐‘–โˆ’1๐น๐‘+๐‘Ž+2๐‘–)

(๐‘โˆ’๐‘Ž) 2โ„

๐‘–=1

if (๐‘ โˆ’ ๐‘Ž)is even.

๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“

:

We take the help of Theorem 1 to prove this theorem.

๐”ฝ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) =

{ 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘+๐‘Ž+2๐‘–๐น๐‘+๐‘Ž+2๐‘–+1โˆ’ 1 ๐น2๐‘–๐น2๐‘–+1)

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

+๐•‚๐‘+๐‘Ž

๐น๐‘โˆ’๐‘Ž if (๐‘ โˆ’ ๐‘Ž) is odd, 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น2๐‘–โˆ’1๐น2๐‘–โˆ’ 1

๐น๐‘+๐‘Ž+2๐‘–โˆ’1๐น๐‘+๐‘Ž+2๐‘–)

๐‘(๐‘โˆ’๐‘Ž) 2โ„ โˆ’๐‘Ž

โ„2

๐‘–=1

if (๐‘ โˆ’ ๐‘Ž) is even.

๐”ฝ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = { 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘Ž+2๐‘–๐น๐‘Ž+2๐‘–+1โˆ’ 1 ๐น2๐‘–๐น2๐‘–+1)

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

+ ๐•‚๐‘Ž

๐น๐‘โˆ’๐‘Ž if (๐‘ โˆ’ ๐‘Ž) is odd, 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น2๐‘–โˆ’1๐น2๐‘–โˆ’ 1

๐น๐‘Ž+2๐‘–โˆ’1๐น๐‘Ž+2๐‘–)

(๐‘โˆ’๐‘Ž) 2โ„

๐‘–=1

if (๐‘ โˆ’ ๐‘Ž) is even.

Depending upon the parity of (๐‘ โˆ’ ๐‘Ž), two different cases are taken into consideration

(13)

Page | 13 Case 1. (๐’ƒ โˆ’ ๐’‚) ๐ข๐ฌ ๐จ๐๐

In this case,

๐”ฝ๐‘(๐‘Ž, ๐‘) = 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘+๐‘Ž+2๐‘–๐น๐‘+๐‘Ž+2๐‘–+1โˆ’ 1

๐น2๐‘–๐น2๐‘–+1โˆ’ 1

๐น๐‘Ž+2๐‘–๐น๐‘Ž+2๐‘–+1+ 1 ๐น2๐‘–๐น2๐‘–+1)

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

+๐•‚๐‘+๐‘Žโˆ’ ๐•‚๐‘Ž ๐น๐‘โˆ’๐‘Ž

= 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘+๐‘Ž+2๐‘–๐น๐‘+๐‘Ž+2๐‘–+1โˆ’ 1

๐น๐‘Ž+2๐‘–๐น๐‘Ž+2๐‘–+1) +๐•‚๐‘+๐‘Žโˆ’ ๐•‚๐‘Ž ๐น๐‘โˆ’๐‘Ž .

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

Now,

๐•‚๐‘+๐‘Ž โˆ’ ๐•‚๐‘ = โˆ‘ 1 ๐น๐‘›๐น๐‘›+1

๐‘+๐‘Ž

๐‘›=1

โˆ’ โˆ‘ 1

๐น๐‘›๐น๐‘›+1

๐‘Ž

๐‘›=1

= โˆ‘ 1

๐น๐‘›๐น๐‘›+1

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= โˆ‘ 1

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘Ž+1= ๐”ฝ๐‘(๐‘Ž, ๐‘Ž + 1)

๐‘

๐‘›=1

๐”ฝ๐‘(๐‘Ž, ๐‘) = 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘+๐‘Ž+2๐‘–๐น๐‘+๐‘Ž+2๐‘–+1โˆ’ 1 ๐น๐‘Ž+2๐‘–๐น๐‘Ž+2๐‘–+1)

โŒŠ(๐‘โˆ’๐‘Ž) 2โ„ โŒ‹

๐‘–=1

+๐”ฝ๐‘(๐‘Ž, ๐‘Ž + 1) ๐น๐‘โˆ’๐‘Ž . Case 2. (๐‘ โˆ’ ๐‘Ž) is even

๐”ฝ๐‘(๐‘Ž, ๐‘) = 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น2๐‘–โˆ’1๐น2๐‘–โˆ’ 1

๐น๐‘+๐‘Ž+2๐‘–โˆ’1๐น๐‘+๐‘Ž+2๐‘–โˆ’ 1

๐น2๐‘–โˆ’1๐น2๐‘–โˆ’ 1

๐น๐‘Ž+2๐‘–โˆ’1๐น๐‘Ž+2๐‘–)

(๐‘โˆ’๐‘Ž) 2โ„

๐‘–=1

= 1

๐น๐‘โˆ’๐‘Ž โˆ‘ ( 1

๐น๐‘Ž+2๐‘–โˆ’1๐น๐‘Ž+2๐‘–โˆ’ 1

๐น๐‘+๐‘Ž+2๐‘–โˆ’1๐น๐‘+๐‘Ž+2๐‘–)

(๐‘โˆ’๐‘Ž) 2โ„

๐‘–=1

.

โˆŽ

ALTERNATING SUM

Let ๐‘Ž > 0 . The following identity is available in from [6].

๐”พ๐‘(0, ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘Ž = 1

๐น๐‘Žโˆ‘ (๐น๐‘—โˆ’1

๐น๐‘— โˆ’๐น๐‘+๐‘—โˆ’1 ๐น๐‘+๐‘— )

๐‘Ž

๐‘—=1 ๐‘

๐‘›=1

.

The above is a sum with alternating sign (called an alternating sum) of order 2. We use the above sum to find a formula for ๐”พ๐‘(๐‘Ž, ๐‘). To achieve this, we use of the following result.

๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 3: ๐ผ๐‘“ 0 < ๐‘Ž < ๐‘ ๐‘กโ„Ž๐‘’๐‘›

๐”พ๐‘(๐‘Ž, ๐‘) = {๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) if ๐‘Ž is odd, ๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) if ๐‘Ž is even.

๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“: Observe that

(14)

Page | 14 ๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=1

โˆ’ โˆ‘ (โˆ’1)๐‘› ๐น๐‘๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘Ž

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž.

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

We distinguish four cases:

Case 1. ๐‘Ž and ๐‘ are odd ๐”พ๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘ = โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + 1 ๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1

๐‘

๐‘›=1

+ โˆ’1

๐น๐‘+๐‘Ž๐น๐‘+๐‘.

๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= 1

๐น๐‘Ž+1๐น๐‘+2+ โˆ’1

๐น๐‘Ž+2๐น๐‘+3+ โ‹ฏ + โˆ’1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1+ 1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘

= โˆ’ ( โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + 1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1+ โˆ’1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘)

= โˆ’๐”พ๐‘(๐‘Ž, ๐‘).

Case 2. ๐‘Ž is odd and ๐‘ is even ๐”พ๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘ = โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + โˆ’1 ๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1

๐‘

๐‘›=1

+ 1

๐น๐‘+๐‘Ž๐น๐‘+๐‘.

๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= 1

๐น๐‘Ž+1๐น๐‘+2+ โˆ’1

๐น๐‘Ž+2๐น๐‘+3+ โ‹ฏ + 1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1+ โˆ’1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘

= โˆ’ ( โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + โˆ’1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1++ 1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘)

= โˆ’๐”พ๐‘(๐‘Ž, ๐‘).

Case 3. ๐‘Ž is even and ๐‘ is odd ๐”พ๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘ = โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + 1 ๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1

๐‘

๐‘›=1

+ โˆ’1

๐น๐‘+๐‘Ž๐น๐‘+๐‘.

๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + 1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1++ โˆ’1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘

(15)

Page | 15

= ๐”พ๐‘(๐‘Ž, ๐‘).

Case 4. ๐‘Ž and ๐‘ are even ๐”พ๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘›

๐น๐‘›+๐‘Ž๐น๐‘›+๐‘ = โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + โˆ’1 ๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1

๐‘

๐‘›=1

+ 1

๐น๐‘+๐‘Ž๐น๐‘+๐‘

๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘โˆ’๐‘Ž

๐‘+๐‘Ž

๐‘›=๐‘Ž+1

= โˆ’1

๐น๐‘Ž+1๐น๐‘+1+ 1

๐น๐‘Ž+2๐น๐‘+2+ โ‹ฏ + โˆ’1

๐น๐‘+๐‘Žโˆ’1๐น๐‘+๐‘โˆ’1++ 1 ๐น๐‘+๐‘Ž๐น๐‘+๐‘

= ๐”พ๐‘(๐‘Ž, ๐‘).

โˆŽ The following theorem is one of the main results of this chapter.

๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 4: ๐ผ๐‘“ 0 < ๐‘Ž < ๐‘ ๐‘กโ„Ž๐‘’๐‘›

๐”พ๐‘(๐‘Ž, ๐‘) = {

1

๐น๐‘โˆ’๐‘Žโˆ‘ (๐น๐‘+๐‘Ž+๐‘—โˆ’1

๐น๐‘+๐‘Ž+๐‘— โˆ’๐น๐‘Ž+๐‘—โˆ’1 ๐น๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

if ๐‘Ž is odd, 1

๐น๐‘โˆ’๐‘Žโˆ‘ (๐น๐‘Ž+๐‘—โˆ’1

๐น๐‘Ž+๐‘— โˆ’๐น๐‘+๐‘Ž+๐‘—โˆ’1 ๐น๐‘+๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

if ๐‘Ž is even.

๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“: We separate two cases:

Case 1. ๐‘Ž is odd

๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = 1

๐น๐‘โˆ’๐‘Žโˆ‘ ( ๐น๐‘—โˆ’1

๐น๐‘— โˆ’๐น๐‘Ž+๐‘—โˆ’1 ๐น๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

โˆ’ 1

๐น๐‘โˆ’๐‘Žโˆ‘ ( ๐น๐‘—โˆ’1

๐น๐‘— โˆ’๐น๐‘+๐‘Ž+๐‘—โˆ’1 ๐น๐‘+๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

= 1

๐น๐‘โˆ’๐‘Žโˆ‘ (

๐น๐‘+๐‘Ž+๐‘—โˆ’1

๐น๐‘+๐‘Ž+๐‘— โˆ’๐น๐‘Ž+๐‘—โˆ’1 ๐น๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

. Case 2. ๐‘Ž is even

๐”พ๐‘+๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) โˆ’ ๐”พ๐‘Ž(0, ๐‘ โˆ’ ๐‘Ž) = 1

๐น๐‘โˆ’๐‘Žโˆ‘ ( ๐น๐‘—โˆ’1

๐น๐‘— โˆ’๐น๐‘+๐‘Ž+๐‘—โˆ’1 ๐น๐‘+๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

โˆ’ 1

๐น๐‘โˆ’๐‘Žโˆ‘ ( ๐น๐‘—โˆ’1

๐น๐‘— โˆ’๐น๐‘Ž+๐‘—โˆ’1 ๐น๐‘Ž+๐‘— )

๐‘โˆ’๐‘Ž

๐‘—=1

= 1

๐น๐‘โˆ’๐‘Žโˆ‘ ( ๐น๐‘Ž+๐‘—โˆ’1

๐น๐‘Ž+๐‘— โˆ’๐น๐‘+๐‘Ž+๐‘—โˆ’1 ๐น๐‘+๐‘Ž+๐‘— ).

๐‘โˆ’๐‘Ž

๐‘—=1

โˆŽ

(16)

Page | 16

SUM WITH INDICES IN A.P.

Let โ„Ž be a natural number. We express certain sums in terms of the following two sums.

๐”ฝ๐‘โ„Ž = โˆ‘ 1 ๐นโ„Ž๐‘›

๐‘

๐‘›=1

, ๐”พ๐‘โ„Ž = โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

NON-ALTERNATING SUM OF ORDER 1

We consider the problem of finding ๐”ฝ๐‘โ„Ž(๐‘Ž) in terms of ๐”ฝ๐‘โ„Ž. ๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 5: ๐ผ๐‘“ ๐‘Ž > 0 ๐‘Ž๐‘›๐‘‘ โ„Ž|๐‘Ž ๐‘กโ„Ž๐‘’๐‘› ๐”ฝ๐‘โ„Ž(๐‘Ž) = ๐”ฝ๐‘+๐‘Ž

โ„Ž โ„Ž โˆ’ ๐”ฝ๐‘Ž

โ„Ž โ„Ž .

๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“:Let ๐‘ =๐‘Ž

โ„Ž and ๐‘Ž = ๐‘โ„Ž then, ๐”ฝ๐‘+๐‘Ž

โ„Ž โ„Ž โˆ’ ๐”ฝ๐‘Ž

โ„Ž

โ„Ž= โˆ‘ 1

๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=1

โˆ’ โˆ‘ 1

๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘ 1

๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

= 1

๐นโ„Ž(๐‘+1)+ 1

๐นโ„Ž(๐‘+2)+ โ‹ฏ + 1

๐นโ„Ž(๐‘+๐‘โˆ’1)+ 1 ๐นโ„Ž(๐‘+๐‘)

= 1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ 1 ๐น๐‘โ„Ž+๐‘Ž

= ๐”ฝ๐‘โ„Ž(๐‘Ž).

โˆŽ

ALTERNATING SUM OF ORDER 1

We consider the problem of finding ๐”พ๐‘โ„Ž(๐‘Ž) in terms of ๐”พ๐‘โ„Ž. ๐‘‡โ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š 6: ๐ผ๐‘“ ๐‘Ž > 0 ๐‘Ž๐‘›๐‘‘ โ„Ž|๐‘Ž ๐‘กโ„Ž๐‘’๐‘›

๐”พ๐‘โ„Ž(๐‘Ž) = { ๐”พ๐‘Ž

โ„Ž โ„Žโˆ’ ๐”พ

๐‘+๐‘Ž โ„Ž

โ„Ž if ๐‘Ž is odd, ๐”พ๐‘+๐‘Ž

โ„Ž โ„Ž โˆ’ ๐”พ๐‘Ž

โ„Ž

โ„Ž if ๐‘Ž is even.

Proof:

Let ๐‘ =๐‘Ž

โ„Ž and ๐‘Ž = ๐‘โ„Ž then,

๐”พ๐‘+๐‘โ„Ž โˆ’ ๐”พ๐‘โ„Ž = โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=1

โˆ’ โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

.

Once again we distinguish four cases.

Case 1. ๐‘ =๐‘Ž

โ„Ž and ๐‘ are odd.

(17)

Page | 17 ๐”พ๐‘โ„Ž(๐‘Ž) = โˆ‘(โˆ’1)๐‘›

๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž. ๐”พ๐‘+๐‘โ„Ž โˆ’ ๐”พ๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘›

๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

= 1

๐นโ„Ž+โ„Ž๐‘+ โˆ’1

๐น2โ„Ž+โ„Ž๐‘+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+โ„Ž๐‘ + 1 ๐น๐‘โ„Ž+โ„Ž๐‘

= 1

๐นโ„Ž+๐‘Ž+ โˆ’1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž

= โˆ’ ( โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž)

= โˆ’๐”พ๐‘โ„Ž(๐‘Ž).

Case 2. ๐‘ =๐‘Ž

โ„Ž is odd, ๐‘ is even ๐”พ๐‘โ„Ž(๐‘Ž) = โˆ‘(โˆ’1)๐‘›

๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ 1 ๐น๐‘โ„Ž+๐‘Ž.

๐”พ๐‘+๐‘โ„Ž โˆ’ ๐”พ๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

= 1

๐นโ„Ž+โ„Ž๐‘+ โˆ’1

๐น2โ„Ž+โ„Ž๐‘+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+โ„Ž๐‘ + โˆ’1 ๐น๐‘โ„Ž+โ„Ž๐‘

= 1

๐นโ„Ž+๐‘Ž+ โˆ’1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž

= โˆ’ ( โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž)

= โˆ’๐”พ๐‘โ„Ž(๐‘Ž) Case 3. ๐‘ =๐‘Ž

โ„Ž is even , ๐‘ is odd ๐”พ๐‘โ„Ž(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž. ๐”พ๐‘+๐‘โ„Ž โˆ’ ๐”พ๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘›

๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

= โˆ’1

๐นโ„Ž+โ„Ž๐‘+ 1

๐น2โ„Ž+โ„Ž๐‘+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+โ„Ž๐‘+ โˆ’1 ๐น๐‘โ„Ž+โ„Ž๐‘

= 1

๐นโ„Ž+๐‘Ž+ โˆ’1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + 1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ โˆ’1 ๐น๐‘โ„Ž+๐‘Ž

= ๐”พ๐‘โ„Ž(๐‘Ž).

(18)

Page | 18 Case 4. ๐‘ = ๐‘Ž

โ„Ž and ๐‘ are even ๐”พ๐‘โ„Ž(๐‘Ž) = โˆ‘(โˆ’1)๐‘›

๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ’1

๐นโ„Ž+๐‘Ž+ 1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ 1 ๐น๐‘โ„Ž+๐‘Ž. ๐”พ๐‘+๐‘โ„Ž โˆ’ ๐”พ๐‘โ„Ž = โˆ‘ (โˆ’1)๐‘›

๐นโ„Ž๐‘›

๐‘+๐‘

๐‘›=๐‘+1

= โˆ’1

๐นโ„Ž+โ„Ž๐‘+ 1

๐น2โ„Ž+โ„Ž๐‘+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+โ„Ž๐‘+ 1 ๐น๐‘โ„Ž+โ„Ž๐‘

= 1

๐นโ„Ž+๐‘Ž+ โˆ’1

๐น2โ„Ž+๐‘Ž+ โ‹ฏ + โˆ’1

๐น(๐‘โˆ’1)โ„Ž+๐‘Ž+ 1 ๐น๐‘โ„Ž+๐‘Ž

= ๐”พ๐‘โ„Ž(๐‘Ž).

โˆŽ

(19)

Page | 19

CHAPTER 3

SUM OF RECIPROCALS OF FIBONACCI NUMBERS WITH NEGATIVE INDICES

We use the conversion of negative Fibonacci numbers with negative indices to Fibonacci numbers with positive indices and then derive the identities for these numbers. We use the following notations.

โ„๐‘ = โˆ‘ 1 ๐นโˆ’๐‘›

๐‘

๐‘›=1

, ๐•€๐‘= โˆ‘(โˆ’1)๐‘› ๐นโˆ’๐‘›

๐‘

๐‘›=1

We first write them in terms of ๐”ฝ๐‘ and ๐”พ๐‘. We use the formula ๐นโˆ’๐‘›= (โˆ’1)๐‘›+1๐น๐‘›

stated in [3]. Then we have

โ„๐‘ = โˆ‘ 1 ๐นโˆ’๐‘›

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)๐‘›+1๐น๐‘› =

๐‘

๐‘›=1

โˆ‘(โˆ’1)๐‘›+1 ๐น๐‘›

๐‘

๐‘›=1

= โˆ’ โˆ‘(โˆ’1)๐‘› ๐น๐‘›

๐‘

๐‘›=1

= โˆ’๐”พ๐‘,

๐•€๐‘ = โˆ‘(โˆ’1)๐‘› ๐นโˆ’๐‘›

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› (โˆ’1)๐‘›+1๐น๐‘› =

๐‘

๐‘›=1

โˆ‘(โˆ’1)1 ๐น๐‘›

๐‘

๐‘›=1

= โˆ’ โˆ‘ 1 ๐น๐‘›

๐‘

๐‘›=1

= โˆ’๐”ฝ๐‘.

โˆŽ

ORDER 1

We first consider the following sums:

โ„๐‘(๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

,

๐•€๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

.

We write the above in terms of ๐”ฝ๐‘(๐‘Ž) and ๐”พ๐‘(๐‘Ž).

(20)

Page | 20

NON-ALTERNATING SUM

The non-alternating sum of Fibonacci numbers of negative indices of 1st order is,

โ„๐‘(๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

. We write this sum in terms of ๐”พ๐‘(๐‘Ž) .

โ„๐‘(๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)๐‘›+๐‘Ž+1๐น๐‘› =

๐‘

๐‘›=1

โˆ‘(โˆ’1)๐‘›+๐‘Ž+1 ๐น๐‘›

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1โˆ‘(โˆ’1)๐‘› ๐น๐‘›

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1๐”พ๐‘(๐‘Ž).

โˆŽ

ALTERNATING SUM

The alternating sum of Fibonacci numbers of negative indices of 1st order is, ๐•€๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘›

๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

. We express this in terms of ๐”ฝ๐‘(๐‘Ž) .

๐•€๐‘(๐‘Ž) = โˆ‘(โˆ’1)๐‘› ๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› (โˆ’1)๐‘›+๐‘Ž+1๐น๐‘› =

๐‘

๐‘›=1

โˆ‘(โˆ’1)๐‘Ž+1 ๐น๐‘›

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1โˆ‘ 1 ๐น๐‘›

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1๐”ฝ๐‘.

โˆŽ

ORDER 2

We next consider the following 2nd order sums:

โ„๐‘(0, ๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

,

๐•€๐‘(0, ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

,

โ„๐‘(๐‘Ž, ๐‘) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

,

๐•€ ๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

.

We express the above sums in terms of ๐”ฝ๐‘(0, ๐‘Ž), ๐”พ๐‘(0, ๐‘Ž), ๐”ฝ๐‘(๐‘Ž, ๐‘) and ๐”พ๐‘(๐‘Ž, ๐‘).

(21)

Page | 21

NON-ALTERNATING SUM

We consider the following 2nd order non-alternating sums.

โ„๐‘(0, ๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž > 0,

โ„๐‘(๐‘Ž, ๐‘) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ 0 < ๐‘Ž < ๐‘.

We express the above sums in terms of ๐”ฝ๐‘(0, ๐‘Ž) and ๐”ฝ๐‘(๐‘Ž, ๐‘) respectively.

First we consider the sum,

โ„๐‘(๐‘Ž) = โˆ‘ 1 ๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)2๐‘›+๐‘Ž+2๐น๐‘› =

๐‘

๐‘›=1

โˆ‘ (โˆ’1)๐‘Ž ๐น๐‘›๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Žโˆ‘ 1 ๐น๐‘›๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž๐”ฝ๐‘(0, ๐‘Ž).

โˆŽ We next consider,

โ„๐‘(๐‘Ž, ๐‘) = โˆ‘ 1 ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)2๐‘›+๐‘Ž+๐‘+2๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘Ž+๐‘ ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+๐‘โˆ‘ 1 ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+๐‘๐”ฝ๐‘(๐‘Ž, ๐‘).

โˆŽ

ALTERNATING SUM

We consider the following 2nd order alternating sums.

๐•€๐‘(0, ๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž > 0,

๐•€๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ 0 < ๐‘Ž < ๐‘.

(22)

Page | 22 We express the above sums in terms of ๐”พ๐‘(0, ๐‘Ž) and ๐”พ๐‘(๐‘Ž, ๐‘).

First we consider the sum, ๐•€๐‘(๐‘Ž) = โˆ‘ (โˆ’1)๐‘›

๐นโˆ’๐‘›๐นโˆ’๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› (โˆ’1)2๐‘›+๐‘Ž+2๐น๐‘›=

๐‘

๐‘›=1

โˆ‘(โˆ’1)๐‘›+๐‘Ž ๐น๐‘›๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Žโˆ‘(โˆ’1)๐‘› ๐น๐‘›๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž๐”พ๐‘(0, ๐‘Ž).

โˆŽ Next we consider,

๐•€๐‘(๐‘Ž, ๐‘) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’๐‘›โˆ’๐‘Ž๐นโˆ’๐‘›โˆ’๐‘

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘›

(โˆ’1)2๐‘›+๐‘Ž+๐‘+2๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

= โˆ‘(โˆ’1)๐‘›+๐‘Ž+๐‘ ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+๐‘โˆ‘ (โˆ’1)๐‘› ๐น๐‘›+๐‘Ž๐น๐‘›+๐‘

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+๐‘๐”พ๐‘(๐‘Ž, ๐‘).

โˆŽ

SUM WITH INDICES IN A.P.

Let โ„Ž be a natural number. We convert the following sums in terms of ๐”ฝ๐‘โ„Ž and ๐”พ๐‘โ„Ž. โ„๐‘โ„Ž = โˆ‘ 1

๐นโˆ’โ„Ž๐‘›

๐‘

๐‘›=1

, ๐•€๐‘โ„Ž = โˆ‘(โˆ’1)๐‘› ๐นโˆ’โ„Ž๐‘›

๐‘

๐‘›=1

.

โ„๐‘โ„Ž = โˆ‘ 1 ๐นโˆ’โ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)โ„Ž๐‘›+1๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘(โˆ’1)โ„Ž๐‘›+1 ๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ’ โˆ‘((โˆ’1)โ„Ž)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

(23)

Page | 23

= {

โˆ’ โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

if โ„Ž is odd,

โˆ’ โˆ‘ 1 ๐นโ„Ž๐‘›

๐‘

๐‘›=1

if โ„Ž is even.

= {โˆ’๐”พ๐‘โ„Ž if โ„Ž is odd,

โˆ’๐”ฝ๐‘โ„Ž if โ„Ž is even.

โˆŽ

๐•€๐‘โ„Ž = โˆ‘(โˆ’1)๐‘› ๐นโˆ’โ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘› (โˆ’1)โ„Ž๐‘›+1๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ‘(โˆ’1)โ„Ž๐‘›+1+๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

= โˆ’ โˆ‘((โˆ’1)โ„Ž+1)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

= {

โˆ’ โˆ‘ 1 ๐นโ„Ž๐‘›

๐‘

๐‘›=1

if โ„Ž is odd,

โˆ’ โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›

๐‘

๐‘›=1

if โ„Ž is even.

= {โˆ’๐”ฝ๐‘โ„Ž if โ„Ž is odd,

โˆ’๐”พ๐‘โ„Ž if โ„Ž is even.

โˆŽ

NON-ALTERNATING SUM OF ORDER 1

We consider the problem of finding 1st order non-alternating sum of Fibonacci number with negative indices, โ„๐‘โ„Ž(๐‘Ž).

โ„๐‘โ„Ž(๐‘Ž) = โˆ‘ 1 ๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

where โ„Ž > 0 and โ„Ž|๐‘Ž.

We write the above sum in terms of ๐”ฝ๐‘(๐‘Ž) and ๐บ๐‘(๐‘Ž).

(24)

Page | 24 โ„๐‘โ„Ž(๐‘Ž) = โˆ‘ 1

๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ 1

(โˆ’1)โ„Ž๐‘›+๐‘Ž+1๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ‘(โˆ’1)โ„Ž๐‘›+๐‘Ž+1 ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1โˆ‘(โˆ’1)โ„Ž๐‘› ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1โˆ‘((โˆ’1)โ„Ž)๐‘› ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= (โˆ’1)๐‘Ž+1 {

โˆ‘(โˆ’1)๐‘› ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

if โ„Ž is odd,

โˆ‘ 1

๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

if โ„Ž is even.

= {(โˆ’1)๐‘Ž+1๐”พ๐‘โ„Ž(๐‘Ž) if โ„Ž is odd, (โˆ’1)๐‘Ž+1๐”ฝ๐‘โ„Ž(๐‘Ž) if โ„Ž is even.

โˆŽ

ALTERNATING SUM OF ORDER 1

We consider the problem of finding 1st order non-alternating sum of Fibonacci number with negative indices, ๐•€๐‘โ„Ž(๐‘Ž).

๐•€๐‘โ„Ž(๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

where โ„Ž > 0 and โ„Ž|๐‘Ž.

We express the above sum in terms of ๐”ฝ๐‘(๐‘Ž) and ๐บ๐‘(๐‘Ž).

๐•€๐‘โ„Ž(๐‘Ž) = โˆ‘ (โˆ’1)๐‘› ๐นโˆ’โ„Ž๐‘›โˆ’๐‘Ž

๐‘

๐‘›=1

= โˆ‘ (โˆ’1)๐‘›

(โˆ’1)โ„Ž๐‘›+๐‘Ž+1๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

= โˆ‘(โˆ’1)โ„Ž๐‘›+๐‘Ž+1 ๐นโ„Ž๐‘›+๐‘Ž

๐‘

๐‘›=1

References

Related documents

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

SaLt MaRSheS The latest data indicates salt marshes may be unable to keep pace with sea-level rise and drown, transforming the coastal landscape and depriv- ing us of a

Although a refined source apportionment study is needed to quantify the contribution of each source to the pollution level, road transport stands out as a key source of PM 2.5

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

Angola Benin Burkina Faso Burundi Central African Republic Chad Comoros Democratic Republic of the Congo Djibouti Eritrea Ethiopia Gambia Guinea Guinea-Bissau Haiti Lesotho

This is to certify that the project report entitled &#34;k-Balancing Numbers and Pellโ€™s Equa- tion of Higher Order&#34; submitted by Juli Sahu to the National Institute,

In this chapter, we recall some definitions known results of Fibonacci and Lucas numbers, Balancing and Lucas-balancing numbers, Pellโ€™s numbers, Associated Pellโ€™s numbers, Real

This is to certify that the project report entitled ON SUM AND RECIPROCAL SUMS OF FIBONACCI NUMBERS submitted by Bishnu Pada Mandal to the National Institute of Technology Rourkela