• No results found

On the performance of the nearest proportional to size sampling design

N/A
N/A
Protected

Academic year: 2023

Share "On the performance of the nearest proportional to size sampling design"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ON THE PERFORMANCE OF THE NEAREST PROPORTIONAL TO SIZE SAMPLING DESIGN

A r u n Kumar A d h i k a r y 1 D e p a r tm e n t o f M a th em atic s

U n i v e r s i t y o f N a ir o b i P . O . Box 3 0 1 9 7 N a i r o b i , Kenya.

Key Words a n d P h r a s e s : F i n i t e p o p u l a t i o n ; G e n e r a l i z e d d iffe re n ce e s t i m a t o r ; N e a r e s t p r o p o r t i o n a l to s i z e s a m p l i n g design: R a t io-c u m - g e n e r a l i z e d d i f f e r e n c e e s t i m a t o r .

ABSTRACT

A s s u m i n g a s u p e r - p o p u l a t i o n model the ex pecte d variance of the g e n e r a l i z e d d i f f e r e n c e e s t i ma t o r ( B a s u , 1 9 7 1 ) b a s e d on the n e a r e s t p r o p o r t i o n a l to s i z e sampling d e s i g n i n t r o d u c e d by G a b l e r ( 1 9 8 7 ) is shown to be less than th a t of the same e s t i m a t o r ba se d on an a r b i t r a r y sampling d e s i g n from w h i c h the former d e s i g n i s r e a l i z e d , f ormer s t r a t e g y i s a l s o shown to f a r e b e t t e r than an

1 O n . l e a v e from I n d i a n S t a t i s t i c a l I n s t i t u t e , C a l c u t t a .

3933

(2)

u n b i a s e d r a t i o - c u m - g e n e r a l i z e d d i f f e r e n c e e s t i m a t o r based on the n e a r e s t p r o p o r t i o n a l to s i z e s a m p l i n g d e s i g n in the s e n s e of h a v i n g l e ss e x p e c t e d d e s i g n v a r i a n c e un de r the same m o d e l .

1. INTRODUCTION

C o n s i de r a f i n i t e p o p u l a t i o n U of s i z e N and let y ( i = l , . . . ,N)be the v a l u e s of a v a r i a t e y u n d e r enquiry, our problem i s to e s t i ma t e the the p o p u l a t i o n total

N

Y = £ y. on the b a s i s of a sample of a f i x e d s i z e n drawn i = l

from the p o p u l a t i o n w i t h a p r o b a b i l i t y P o ( s ) .

G a b l e r ( 1 9 8 7 ) has i n t r o d u c e d the n e a r e s t proportional to s i z e sa mpl i ng d e s i g n p ( s ) d e f i n e d as *

P * ( s ) = ( E \ ] p o(s) (1.1)

where A ' s ( i = l , . . . , N ) are a l l p o s i t i v e and a r e given by

where

Do

o o ©

1 "^12 ' 1 I N

o O o

2 1 H 2 ^ 2 N

o o o

H I ^ N 2 ■ • • TIn

* * . T (

= Ctil ' ’Hn5 ’ Hi

(1.2)

X = ( A^,. . . ,\n ) and

b e i n g the f i r s t order i n c l u s i o n p r o b a b i l i t i e s f o r the units f o r the s a mpl i n g d e s i g n P 0 ( s ) | p * ( s ) Ja n d s b ei n g the s e c o n d order i n c l u s i o n p r o b a b i l i t i e s f o r the p a i r s of units f o r the d e s i g n p ( s ) .

(3)

G a b l e r ( 1 9 8 7 ) has a l s o d i s c u s s e d how to r e a l i s e p ( s ) starting from an a r b i t r a r y f i x e d sample s i z e ( n ) d e s i g n p ( s) and has c a l l e d s u c h a d e s i g n a -j ps d e s i g n w h i c h satisf i e s N *£ . = n .

i. =1

N

L e t t 1 = 2 ^ 2 be a g e n e r a l i z e d d i f f e r e n c e

# i = l

’•es Hi

estimator ( B a s u , 1 9 7 1 ) b a s e d on s u c h a n ps d e s i g n f o r some real numbers 9. t = l . . . . , N . known or o t h e r w i s e . Our p u r pos e

l,

here i s to i n v e s t i g a t e w h e t h e r t f a r e s b e t t e r than the same e s t i m a t o r b a s e d on the o r i g i n a l d e s i g n p ( s ) v i z .

N t y.

2 _

O i = i

ie s n,

As the c l a s s i c a l r a t i o e s t i m a t o r i s known to be unbiased u n d e r the M i d z u n o-S e n s a m p l i n g scheme ( M i d z u n o , 1952; S e n , 1 9 5 3 ) and as n * p s d e s i g n i s a p r o c e e d i n g of the Midzuno-Sen s a m p l i n g s c he me , we may c o n s i d e r the f o l l o w i n g ra t i o -cu m-ge n e ra l i z e d d i f f e r e n c e e s t i m a t o r

I

y i - e i i<=s o t =

3 --- * I 6 . .

I \

t «ES

which is a l s o u n b i a s e d u n d e r p * ( s ) .

The m o t i v a t i o n f o r i n t r o d u c i n g the a b ov e ra t i o -c u m-ge n e r a l i z e d d i f f e r e n c e e s t i m a t o r i s e v e n t u a l l y to compare i t s r e l a t i v e e f f i c i e n c y w i t h t h a t of t and t .

1 2

(4)

2. A MODEL AND THE RESULTS To compare the r e l a t i v e e f f i c i e n c i e s of the above s t r a t e g i e s we p o s t u l a t e a s u p e r -p o p u l a t i o n model H s p e c i f i e d by

E ( y . ) - e , V (y. ) = E ( y - & ) Z = a 2

m *v V m v m v V x

and C ( V , y .)- Em( y . - e . ) ( y 0 V u*j,

j m v t j j

where s are any p o s i t i v e r e a l numbers V i.

W r i t i n g E * ( V * ) a s an o p e r a t o r f o r the expectation

p p

( v a r i a n c e ) w i t h r e s p e c t to the sa mp l i n g d e s i g n p*, we have

the f o l l o w i n g theorem

Theorem 1 . Under the model M, we have

E V * ( t ) > E V * ( t ) , , n

m p 3 m p 1 ( 2 . 1 )

P r o o f . F o l l o w i n g Godambe and Thompson ( 1 9 7 7 ) , we can write

E m v „* m p x = E *V ( t ) + E . A ( t ) - V ( Y )p ttj 1 p m 1 tn

where A ( t ) = E ( t )-E ( Y ) .

m l m l Tn

Now under the model M, we have A ( t ) = 0 and hence m i

E V * ( tm p

N r i

•>

= x < M

S i m i l a r l y we may chec k that

m p 3

i S3v

By Ca u chy-Schwarz i n e q u a l i t y i t f o l l o w s th a t

(2.2)

(2. 3)

(5)

P ( s )

I

PQ (s)

LS3i i S S

J_ V p°( s ) > _L

Hi. Hi

( 2 . 4 )

How, E V * ( t )-E V * ( t )

m p 3 m p 1

- - i n . L--' . L <- -H i S3l

1 _

*

Hi

> 0

by u s i n g ( 2 . 4 ) .

Remark 1 . The e q u a l i t y h ol d s when \ X. i s c o n s t a n t f or a l l ISs

s with p ( s ) > 0 i . e when V = - V i w hi ch s a t i s f i e s

N 1 n

) V-n° = 1 and in t h a t c a s e t c o n c i d s s w i t h t .

L l " i 1 3

Let us now c o n s i d e r a s i m p l i f i e d form of the above o *

V"iHi-

2 2 o *

model ( t o be c a l l e d model M ) when ov ~o V n . n . . where <* is a posi ti ve r e a l number.

W r i t i n g E V as an o p e r a t o r f o r e x p e c t a t i o n po <■ poJ

(variance) w i t h r e s p e c t to the s a m p l i n g d e s i g n pqJ we have the f o l l w i n g theorem.

Theorem 2 . Under the model M , we have

E V Proof. We have

E V

m p

,(i J 2 E» v ( * J

- Mv ss 1 ^ III - r 1 )J

( 2 . 5 )

(6)

so t h a t

E V f t ] - E V . f t l

m p0 1 2J m p I

N f 'i

= / t ----o

U

*

i=± L Hi M

= 1,1 11 \ ) " ° i = 1

N

b e c a u s e H?]

i =i

N N

= i i - 1 as ] T \ ^

i =1 i =i

N

P * ( s ) - 2+1 i = 1 S5i

= Z ( X N K ( s ) 2Z p * ( s ) + 1

s les s

= Y i I po(s) - zI ( I \ ] po( s > + 1

s i . e s s i- es

S i € S N

Remark 2 . We may note tha t the q u a n t i t y Z n K - - )

the d i r e c t e d d i s t a n c e from the d e s i g n p Q to the d e s i g n p as i n t r o d u c e d by G a b l e r ( 1 9 8 7 ) .

Remark 3 . Here the e q u a l i t y hol d s when ^ V = 1 f o r all 5 i € S

1 *

w i t h p ( s ) > 0 i . e when X. = — V i in w h i c h case i,

o i n

c o i n c i d e s w i t h r e s u l t i n g no d i f f e r e n c e b e t we e n t ±

(7)

Under a n o t h e r s i m p l i f i e d v e r s i o n of the above model M

where o i s a

2 2 0

(to be c a l l e d model M ) when a. -a

2 ' i o'" i"®i o

positive r e a l n umber, we have the f o l l o w i n g theorem.

Theorem 3 . Under t h e model M , we have E V *

m p (

2

.

6

)

Proof. We haveh a ve E V *ft }

m P V. 3J

N r

- 1

L - q 2

i = 1 -Hi

N -

2 1

L__ v * i = l Hi

N

=

-Jit:

-

= 0.

Here a l s o

E V

m p

p0 (s>

S3v l€S

O by u s i n g ( 2 . 4 )

Remark 4 . H e r e a l s o t h e e q u a l i t y h o l d s w h e n

constant f o r a l l s w i t h p ( s ) > 0 i . e . when X. = — V i

o v n

which c a s e th e r e is n o t h i n g to c h oo s e b e t w e e n t 2 and t3

have the same

Remark 5 . Under the model M2 , t^ and t 2

expected d e s i g n - v a r i a n c e i . e . E V * [ t 1 = E V It 1 .

m p (. l j m p Q l Z j

Remark 6 . We may n o t e t h a t u n l i k e Theorem 1, in

Theorem 2 ( T h e o r e m 3 ) , the model v a r i a n c e V ( y . ) is assumed m \.

, o * f o *0

to be p r o p o r t i o n a l to V-V V I I I . t Ij j d- h) • D w h i c h is n e a r l y

2 *

P ro po rti on a l to p i( p i ) , p ^ s b e i n g the normed s i z e m e a s u r e s

°f the u n i t s . S i m i l a r a s s u m p t i o n s r e g a r d i n g c/z a re a l s o Available in the l i t e r a t u r e . For e x a m p l e , C a s s e l , S a r n d a l and W r e t m a n ( 1 9 7 6 ) i n v e s t i g a t e d o p t i m a l s t r a t e g i e s f o r

(8)

e s t i m a t i n g Y w i t h i n a c l a s s of l i n e a r e s t i m a t o r s under a s u p e r - p o p u l a t i o n model in the se n s e of a t t a i n i n g a lower bound on the mo d e l - e x p e c t e d d e s i g n - v a r i a n c e of an e s t i m a t o r . T h e y f o u n d t h a t the lower bound i s a t t a i n e d by a g e n e r a l i z e d d i f f e r e n c e e s t i m a t o r b a s e d on a s a m p l i n g design w i t h i n c l u s i o n p r o b a b i l i t i e s p r o p o r t i o n a l to known s i z e - m e a s u r e s ( W * s , s a y ) o n l y when the m o d e l - e x p e c t a t i on s and s t a n d a r d d e v i a t i o n s are p r o p o r t i o n a l to W ' s .

ACKNOWLEDGEMENT

The a u t h o r i s g r a t e f u l to the r e f e r e e f o r helpful s u g g e s t i o n s t h a t led to an a p p r e c i a b l e improvement over an e a r l i e r d r a f t .

BI B LI O G RAP P HY

B a s u , D . ( 1 9 7 1 ) . An e s s a y on the l o g i c a l f o u n d a t i o n s of s u r v e y s a m p l i n g . P a r t i in : V . P . Godambe and D . A . S p r o t t e d i t i o n , F o u n d a t i o n s of S t a t i s t i c a l I n f e r e n c e , H o l t , R i n e h a r t and W i n s t o n , T o r o n t o , 2 0 3 - 2 4 2 .

C a s s e l , C . M . , S a r n d a l , C. E. and Wretman, J . H. ( 1 9 7 6 ) . Some r e s u l t s in g e n e r a l i z e d d i f f e r e n c e e s t i m a t i o n and g e n e r a l i z e d regression e s t i m a t i o n f or f i n i t e p o p u l a t i o n s .

B i o m e t r i k a , 6 3 , 6 1 5 - 6 2 0 .

G a b l e r , S . ( 1 9 8 7 ) . The n e a r e s t p r o p o r t i o n a l to size sa mpl i ng d e s i g n . Comm. s t a t i s t . - Theor.

M e t h . , 16, H o . 4 , 1 1 1 7 - 1 1 3 1 .

(9)

Godambe, V. P. and Th o m p s o n , M. E. ( 1 9 7 7 ) . Robus t n e a r o p t i m a l e s t i m a t i o n in s u r v e y p r a c t i c e . B u l l . I n t . S t a t i s t . I n s t . , A T , 1 2 3 - 1 4 6 . Midzuno, H. ( 1 9 5 2 ) . On the s a m p l i n g system w i t h

p r o b a b i l i t y p r o p o r t i o n a l to sum of s i z e s . A n n . I n s t . S t a t i s t . Math,, 3 , 9 9 - 1 0 7 .

Sen, A. R . ( 1 9 5 3 ) . On the e a t i m a t i o n of v a r i a n c e in s a m p l i n g w i t h v a r y i n g p r o b a b i l i t i e s . J . I n d . S o c . A g r i . S t a t i s t . , 5, 1 1 9 - 1 2 7 .

Received J u n e 199 0; = e v :s ed A i r ! 1 ! 99 ! .

-ecormended by P. S. R. S. Rao, Upi v e r s ' +y o f R o c h e s te r, Rochest er , NY.

References

Related documents

In summary, compared with what is happening in the rest of the world, where the lockdown measures and the economic crisis are driving the decrease in energy demand, the general

Percentage of countries with DRR integrated in climate change adaptation frameworks, mechanisms and processes Disaster risk reduction is an integral objective of

Corporations such as Coca Cola (through its Replenish Africa Initiative, RAIN, Reckitt Benckiser Group and Procter and Gamble have signalled their willingness to commit

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

To break the impasse, the World Bank’s Energy Sector Management Assistance Program (ESMAP), in collaboration with Loughborough University and in consultation with multiple

Angola Benin Burkina Faso Burundi Central African Republic Chad Comoros Democratic Republic of the Congo Djibouti Eritrea Ethiopia Gambia Guinea Guinea-Bissau Haiti Lesotho

Besides that the performance of KNLF classifier is on par with K-Nearest Neighbor and better than Weighted k-Nearest Leader, which proves that pro- posed K-Nearest Leader

In the present project, the economic design of the X- bar control chart using Simulated Annealing has been developed to determine the values of the sample size, sampling