• No results found

Motion due to ringsource in ice-coveredwater

N/A
N/A
Protected

Academic year: 2023

Share "Motion due to ringsource in ice-coveredwater"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)

/0 ¼2pa Z 1

0

eÿkjyÿgjJ0ðkaÞJ0ðkRÞdk ð1:1Þ

where a is the radius of the ring with centre at ð0;0;gÞ using a cylindrical co-ordinate system ðR;h;yÞ, y-axis being taken as the axis of the ring. However, in a fluid with a boundary at its upper surface, the potential due to a ring source can be decomposed into two parts, the first part representing the potential due to a ring of wave sources present in an unbounded fluid while the second representing its image in the upper boundary and the bottom, if there be any, conditions.

Hulme [2] constructed the velocity potential due to a horizontal ring of wave sources of time- harmonic strength submerged in deep water with a free surfacein terms of multi-valued toroidal harmonics. Rhodes-Robinson [3,4] earlier used a reduction technique to obtain the ring source potential for both deep water and finite depth water in the presence of surface tension at the free surface. Mandal and Kundu [5] obtained the velocity potential due to a ring source of time- dependent strength submerged in deep water with an inertial surface in the presence of surface tension, the inertial surface being composed of uniformly distributed non-interacting floating material. Here we consider the motion due to a submerged horizontal ring of wave sources of time-dependent strength present in water with anice-cover, the ice-cover being modelled as a thin elastic sheet composed of elastic material of uniform area density. The problem is formulated as an initial value problem for the velocity potential describing the motion in the fluid, and the Laplace transform technique is employed to solve it. Three types of source strengths, namely impulsive initially but zero later, the classical case of constant strength and finally the important case of time-harmonic strength are considered. The steady-state development of the potential function for time-harmonic source strength shows the existence of outgoing progressive waves of any frequencyunder the ice-cover. This is in contrast with the case when the ice-cover is modelled as an inertial surface in which case outgoing time-harmonic progressive waves exist under the inertial surface only when the angular frequency is less than a certain constant which depends on the surface density of the inertial surface [6].

2. Mathematical formulation

A cylindrical co-ordinate system ðR;h;yÞ is chosen in which the y-axis is taken vertically downwards into the water which is assumed to be homogeneous with densityqand inviscid. The upper surface of water is covered by a thin layer of ice modelled as an elastic sheet having uniform surface density q, Young’s modulus E and Poisson’s ratio c; being a constant having the dimension of length. A horizontal ring of radiusaof uniformly distributed point sources, each of the same time-dependent strengthmðtÞ, is present at a depthgbelow the mean position of the ice- cover, taken as the y¼0 plane. The axis of the ring coincides with the y-axis. The only external force acting on the system is the gravity g. The motion in water is generated when the point sources on the ring start operating at a given instant simultaneously. Since the motion in water starts from rest, it is irrotational and can be described by a potential function/ðR;y;tÞ. Then / satisfies

(3)

1

RðR/RÞRþ/yy¼0 ð2:1Þ

in the fluid region except at points on the ring. IffðR;tÞ denotes the depression of the ice-cover below its mean position, then the linearised kinematic and dynamic conditions on the ice-cover are given by

/y ¼ft on y¼0 ð2:2Þ

and

ð/ÿ/yÞt ¼ ðDr4Rþ1Þgf on y¼0 ð2:3Þ

where D¼12ð1ÿmEh302Þqg is a constant, h0 being the very small thickness of the ice-cover and r2 ¼R1 @R@ ðR@R@Þ. Elimination of f between (2.2) and (2.3) produces the linearised ice-cover con- dition

ð/ÿ/yÞtt ¼ ðDr4Rþ1Þg/y ony ¼0: ð2:4Þ

The initial conditions at the ice-cover are

/ÿ/y ¼0; ð/ÿ/yÞt ¼0 on y¼0 at t¼0 ð2:5Þ which are obtained due to continuity offfor all times. Also,/must satisfy the bottom condition

r/!0 as y! 1 ð2:6aÞ

for deep water, or

/y ¼0 on y¼h ð2:6bÞ

for water of uniform finite depthh. Also, at points near the ring

/!mðtÞ/0 as fðRÿaÞ2þ ðyÿgÞ2g1=2 !0 ð2:7Þ where/0 is given by (1.1).

It may be noted that for time-harmonic motion of angular frequencyr, the ice-cover condition (2.4) becomes

K/þÿDr4R

þ1ÿK

/y ¼0 on y¼0 ð2:8Þ

whereK¼r2=g. If/has the time-harmonic progressive wave form given by /¼RefeÿkyH0ð1Þ;ð2ÞðkRÞeÿirtg

for deep water, or

(4)

/¼RefcoshkðhÿyÞH0ð1Þ;ð2ÞðkRÞeÿirtg

for water of uniform finite depthh, thenk satisfies the polynomial equation

DðkÞ kðDk4þ1ÿKÞ ÿK¼0 ð2:9Þ

for deep water, or the transcendental equation

D0ðkÞ kðDk4þ1ÿKÞsinhkhÿKcoshkh¼0 ð2:10Þ for finite depth water. It can be easily verified that the nature of the zeros of DðkÞ and D0ðkÞ remains the same whether 1ÿKis positive or negative so long asD6¼0, and that bothDðkÞand D0ðkÞpossess a unique positive real zero.

ForDðkÞwe denote its positive real zero byk. The other zeros ofDðkÞare two pairs of complex conjugate numbers denoted by ðk1;k1Þ and ðk2;k2Þ where Rek1 >0, Imk1>0 and Rek2 <0, Imk2 >0. Chakrabarti et al. [7] gave an elementary proof for the nature of the zeros ofDðkÞ for ¼0. However, for6¼0, the same elementary proof can be used to find the nature of the zeros of DðkÞ with obvious modifications.

Again, forD0ðkÞwe denote its positive real zero byl. It can be shown thatD0ðkÞhas a negative real zero at k¼ ÿl, two pairs of complex conjugate roots l1;l1 and ÿl1;ÿl1 with Rel1 >0, Iml1 >0 and Rel1<Iml1, and an infinite number of purely imaginary roots ianðan >0,

n¼1;2;. . .Þ whereanh!npasn! 1 (see [8]).

For the caseD¼0, the ice-cover is no longer modelled as an elastic plate, and it becomes an inertial surface, and the ice-cover (inertial surface) condition becomes

K/þ ð1ÿKÞ/y ¼0: ð2:11Þ

This shows that progressive wave is possible only when 1ÿK >0 i.e.r<ðg=Þ1=2 (cf. [6]). For rPðg=Þ1=2, the form (2.11) does not allow any progressive wave.

3. Solution

To solve the initial value problem for/described above, we use Laplace transform defined by

/ðR;y;pÞ ¼ Z 1

0

/ðR;y;tÞeÿptdt; p>0; ð3:1Þ

then, /satisfies the boundary value problem described by 1

RðR/RÞRþ/yy ¼0 ð3:2Þ

in the fluid region except at points on the ring,

/!mðpÞ/0 asfðRÿaÞ2þ ðyÿgÞ2g1=2 !0; ð3:3Þ

(5)

p2/ÿ Dr4R

þ1þp2 g

g/y ¼0 ony ¼0; ð3:4Þ

r/!0 as y! 1 ð3:5aÞ

for deep water, or

/y ¼0 on y¼h ð3:5bÞ

for finite depth water.

We now consider the cases of deep water and finite depth water separately.

Case (a): deep water

A solution for / satisfying (3.2), (3.3) and (3.5a) is constructed as

/ðR;y;pÞ ¼mðpÞ /0

þ Z 1

0

AðkÞeÿkyJ0ðkRÞdk

ð3:6Þ whereAðkÞ is an unknown function of k to be determined such that the integral in (3.6) is con- vergent. Using the form of /0 given in (1.1), it is seen that the condition (3.4) is satisfied if we choose

AðkÞ ¼2paJ0ðkaÞfgkð1þDk4Þ ÿ ð1ÿkÞp2geÿkg

ð1þkÞp2þgkð1þDk4Þ : ð3:7Þ

Thus /ðR;y;pÞ in this case is obtained as

/ðR;y;pÞ ¼mðpÞXðR;yÞ þmðpÞ Z 1

0

X2

X2þp2YðR;y;kÞdk ð3:8Þ

where

XðR;yÞ ¼2pa Z 1

0

eÿkjyÿgj

ÿ1ÿk

1þkeÿkðyþgÞ

J0ðkaÞJ0ðkRÞdk;

YðR;y;kÞ ¼4paJ0ðkaÞ

1þkJ0ðkRÞeÿkðyþgÞ ð3:9Þ

and

X2ðkÞ ¼gkð1þDk4Þ

1þk : ð3:10Þ

Laplace inversion of (3.8) produces

/ðR;y;tÞ ¼mðtÞXðR;yÞ þ Z 1

0

XðkÞYðR;y;kÞ

Z t

0

mðsÞsinXðt

ÿsÞds

dk:

ð3:11Þ

(6)

For a ring source of impulsivestrength we take mðtÞ ¼dðtÞ, and in this case (3.11) produces

/impðR;y;tÞ ¼dðtÞXðR;yÞ þ Z 1

0

XðkÞYðR;y;kÞsinXtdk ð3:12Þ For large t, the expression in (3.12) vanishes. This has the interpretation that since the sources around the ring act instantaneously at t¼0, they have no effect on the fluid motion after a long lapse of time.

For a ring source ofconstant strength mðtÞ ¼1, (3.11) gives

/constðR;y;tÞ ¼XðR;yÞ þ Z 1

0

YðR;y;kÞð1ÿcosXtÞdk: ð3:13Þ For a ring of wave sources oftime-harmonicstrength, we takemðtÞ ¼sinrtwhereris the circular frequency. In this case, (3.11) gives

/ðR;y;tÞ ¼sinrtXðR;yÞ þ Z 1

0

XðkÞYðR;y;kÞXsinrtÿrsinXt

X2ÿr2 dk ð3:14Þ

To determine the form of (3.14) ast! 1, we introduce a Cauchy principal value atk ¼kwhich is the real positive zero of X2ÿr2 i.e. DðkÞ, in the integral in (3.14), and following Rhodes- Robinson [6], we obtain, ast! 1

/!2pasinrt Z

--

1 0

eÿkjyÿgj

þkðDk4þ1ÿKÞ þK

DðkÞ eÿkðyþgÞ

J0ðkaÞJ0ðkRÞdk

ÿ4p2acosrtkðDk4þ1ÿKÞ

1ÿKþ5Dk4 eÿkðyþgÞJ0ðkaÞJ0ðkRÞ ð3:15Þ

where the integral is in the sense of Cauchy principal value. This integral can be simplified by using the relation 2J0ðkRÞ ¼H0ð1ÞðkRÞ þH0ð2ÞðkRÞ, and rotating the contour in the complex k-plane for the integral involving H0ð1ÞðkRÞ in the first quadrant and for the integral involving H0ð2ÞðkRÞin the fourth quadrant. Thus an alternative representation for the expression in (3.15) is given by

/!8asinrt Z 1

0

Lðk;yÞLðk;gÞI0ðkaÞ

k2ð1ÿKþDk4Þ2þK2K0ðkRÞdk þ2p2iasinrt fn ðy;g;k1ÞH0ð1Þðk1;RÞ

ÿfðy;g;k1ÞH0ð2Þðk1RÞo

ÿ2p2afðy;g;kÞfsinrtY0ðkRÞ þcosrtJ0ðkRÞg ð3:16Þ where

Lðk;yÞ ¼kð1ÿKþDk4ÞcoskyÿKsinky; ð3:17Þ

(7)

fðy;g;kÞ ¼2kð1ÿKþDk4Þ

1ÿKþ5Dk4 eÿkðyþgÞJ0ðkaÞ: ð3:18Þ

It may be noted that the second term in the expression in (3.16) is real. For largeR, we find from (3.16) that ast! 1.

/! ÿ4p2akð1ÿKþDk4Þ

1ÿKþ5Dk4 eÿkðyþgÞJ0ðkaÞ 2 pkR 1=2

coskR

ÿrtÿp 4

: ð3:19Þ

This shows that/represents outgoing progressive waves as R! 1.

Case (b): finite depth water

In this case a solution for /satisfying (3.2) and (3.3) is constructed as

/¼mðpÞ /0

ÿ2pa Z 1

0

eÿkðyþgÞJ0ðkaÞJ0ðkRÞdk þ

Z 1

0

fBðkÞcoshkðhÿyÞ þCðkÞsinhkyg J0ðkaÞ

coshkhJ0ðkRÞdk

ð3:20Þ where the functions BðkÞ and CðkÞ, for the satisfaction of the conditions (3.4) and (3.5b), are chosen as

BðkÞ ¼4pa

gk1þDk4þpg2

MðkÞðX20þp2Þ coshkðhÿgÞ;

CðkÞ ¼4paeÿkhsinhkg ð3:21Þ

with

MðkÞ ¼coshkhþksinhkh;

X20ðkÞ ¼gkð1þDk4Þsinhkh

MðkÞ : ð3:22Þ

Thus /is obtained as

/¼mðpÞPðR;yÞ þmðpÞ Z 1

0

X20

X20þp2QðR;y;kÞdk ð3:23Þ

where

PðR;yÞ ¼2pa Z 1

0

eÿkjyÿgj

ÿeÿkðyþgÞþ 2 coshkh

k

MðkÞ coshkðh

ÿyÞcoshkðhÿgÞ þeÿkhsinhkysinhkg

J0ðkaÞJ0ðkRÞdk ð3:24Þ

(8)

and

QðR;y;kÞ ¼4pacoshkðhÿyÞcoshkðhÿgÞ

MðkÞsinhkh J0ðkaÞJ0ðkRÞ: ð3:25Þ

Laplace inversion of (3.23) gives

/ðR;y;tÞ ¼mðtÞPðR;yÞ þ Z 1

0

X0ðkÞQðR;y;kÞ Z t

0

sinX0ðt

ÿsÞmðsÞds

dk: ð3:26Þ

For impulsive source strengthmðtÞ ¼dðtÞ, and (3.26) gives

/impðR;y;tÞ ¼dðtÞPðR;yÞ þ Z 1

0

X0ðkÞQðR;y;kÞsinX0tdt ð3:27Þ which tends to zero as t! 1, as in the case of deep water.

Forconstant source strengthmðtÞ ¼1, and (3.26) gives

/cðR;y;tÞ ¼PðR;yÞ þ Z 1

0

QðR;y;kÞð1ÿcosX0tÞdk: ð3:28Þ For time-harmonicsource strengthmðtÞ ¼sinrt and in this case (3.26) produces

/ðR;y;tÞ ¼sinrtPðR;yÞ þ Z 1

0

X0ðkÞQðR;y;kÞX0sinrtÿrsinX0t

X20ÿr2 dk: ð3:29Þ

As in the case of deep water, the steady-state development of/, given by (3.29), can be obtained by introducing a Cauchy principal value at k ¼l which is the real positive zero of X20ÿr2 i.e.

D0ðkÞ, in the integral in (3.29). Then as t! 1, we find /!sinrt PðR;yÞ

þ2 Z

--

1 0

kð1þDk4Þ

D0ðkÞMðkÞ coshkðhÿyÞcoshkðhÿgÞJ0ðkaÞJ0ðkRÞdk

ÿ8p2alð1ÿKþDl4ÞcoshlðhÿyÞcoshlðhÿgÞJ0ðlaÞJ0ðlRÞ

2lhð1ÿKþDl4Þ þ ð1ÿKþ5Dl4Þsinh 2lh ð3:30Þ where the integral is in the sense of CPV.

In the right-hand side of (3.30), combining the integral representation ofPðR;yÞgiven in (3.24) and the CPV integral and changing the contour along the real axis with indentations above the pole at k¼ ÿland below the pole at k¼l, the following alternative representation is obtained:

/!8pasinrtX1

n¼1

gðy;g;ianÞK0ðanRÞ þ4p2iasinrtfgðy;g;l1ÞH0ð1Þðl1

ÿgðy;g;l1ÞH0ð2Þðl1RÞg ÿ4p2agðy;g;lÞfsinrtY0ðlRÞ þcosrtJ0ðlRÞg ð3:31Þ

(9)

where

gðy;g;kÞ ¼2kð1ÿKþDk4ÞcoshkðhÿyÞcoshkðhÿgÞJ0ðkaÞ

ð1ÿKþ5Dk4Þsinh 2khþ ð1ÿKþDk4Þ2kh ð3:32Þ and the second term in (3.31) is real. For large R, we find that, ast! 1

/! ÿ8p2alð1ÿKþDl4ÞcoshlðhÿyÞcoshlðhÿgÞJ0ðlaÞ ð1ÿKþ5Dl4Þsinh 2lhþ ð1ÿKþDl4Þ2lh

2 plR 1=2

coslR

ÿrtÿp 4

:

ð3:33Þ This shows that/represents progressive outgoing waves as R! 1.

4. Conclusion

The velocity potential due to a horizontal circular ring of wave sources of time-dependent strength submerged in water with an ice-cover has been obtained for both infinite and finite depth of water. For the case of time-harmonic sources, the steady-state development of the potential function shows the existence of outgoing progressive waves at large distances from the ring source. If the elastic parameterDis put equal to zero, then the results for deep water coincide with the results obtained in [5] for deep water with an inertial surface in the absence of surface tension.

If bothDand are put equal to zero, then the results obtained above can be identified with the results obtained earlier in [3]. The effect of surface tension at the ice-cover can be incorporated in the above results.

Acknowledgement

This work is supported by CSIR, New Delhi.

References

[1] R.C. Thorne, Multipole expansions in the theory of surface water waves, Proc. Camb. Philos. Soc. 49 (1953) 707–

716.

[2] A. Hulme, The potential of a horizontal ring of wave sources in a fluid with a free surface, Proc. R. Soc. London A375 (1981) 295–306.

[3] P.F. Rhodes-Robinson, On surface waves in the presence of immersed vertical boundaries. I, Q. J. Mech. Appl.

Math. 32 (1979) 109–124.

[4] P.F. Rhodes-Robinson, On surface waves in the presence of immersed vertical boundaries. II, Q. J. Mech. Appl.

Math. 32 (1979) 125–132.

[5] B.N. Mandal, K. Kundu, Ring source potentials in a fluid with an inertial surface in the presence of surface tension, Int. J. Eng. Sci. 25 (1987) 1383–1386.

[6] P.F. Rhodes-Robinson, On the generation of water waves at an inertial surface, J. Austral. Math. Soc. Ser. B. 25 (1984) 366–383.

(10)

[7] A. Chakrabarti, D.S. Ahluwalia, S.R. Manam, Surface water waves involving a vertical barrier in the presence of an ice-cover, Int. J. Eng. Sci. 41 (2003) 1145–1162.

[8] H. Chung, C. Fox, Calculation of wave-ice interaction using the Wiener–Hopf technique, New Zeal. J. Math. 31 (2002) 1–18.

References

Related documents

Although a refined source apportionment study is needed to quantify the contribution of each source to the pollution level, road transport stands out as a key source of PM 2.5

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

With an aim to conduct a multi-round study across 18 states of India, we conducted a pilot study of 177 sample workers of 15 districts of Bihar, 96 per cent of whom were

With respect to other government schemes, only 3.7 per cent of waste workers said that they were enrolled in ICDS, out of which 50 per cent could access it after lockdown, 11 per

The impacts of climate change are increasingly affecting the Horn of Africa, thereby amplifying pre-existing vulnerabilities such as food insecurity and political instability

Harmonization of requirements of national legislation on international road transport, including requirements for vehicles and road infrastructure ..... Promoting the implementation

China loses 0.4 percent of its income in 2021 because of the inefficient diversion of trade away from other more efficient sources, even though there is also significant trade

Form the velocity contour diagrams in figure 18 and figure 19, it was compared that the in submerged vegetation, at 8 cm depth of water the velocity of flow decreases due to presence