• No results found

Alternative ideas in cosmology

N/A
N/A
Protected

Academic year: 2022

Share "Alternative ideas in cosmology"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

DU NL OP , J.S . &

P EA CO CK , J.A . 1990 . MNRAS , 247 , 1 9

EA LE S, S.A ., RA WL IN GS , S . 199 6 Ap], 460, 6 8

FI XS EN , D.

J.

, CH EN G, E.

S.

, G AL ES , J .M ., MA TH ER , J.

C.

, SH AF ER ,

R.

A. &

W RI GH T, E.

L. 199 6 Ap], 473, 57 6

GO WE R, J . F . R . 196 6 MNRAS, 13 3 , 15 1

HO YL E, F.

1949 MNRAS, 109 , 365

1 95 3 ApJS, 1, 12 1

HOYLE, F . &

TAYLER, R.J . 196 4 Nature, 203,

1 10 8

IN SK IP , K.

J.

, BEST , P.N ., LO NG AI R, M.

S. &

MACKAY, D.

J.

C. 2002 a

MNRAS, 329 , 27 7

IN SK IP , K.

J.

, BEST , P . N.

, RS TT GE RI NG , H . J . A.

, RA WL IN GS ,

S., CO TT ER , G . &

L ON GA IR , M . S . 2002 b MNRAS , 337 , 140 7

LE MA IT RE , G . 1 93 1 Nature, 127, 70

6

LIL LY , S.

M. &

L ON GA IR , M . S . 198 4 MNRAS , 2 1 1, 833

LO NG AI R, M . S . 199 8 Galaxy Formation (Berlin

: Springer-Verlag )

1995 'Astrophysic s an

d Cosmology ' i

n Twentieth Century Physics,

eds. L . M . Brown ,

A. Pai s an d A.B . Pippard , 3 , 1 6 71 (Bristol: IO P Publishin g an d Philadelphi a Ne

w

York: AI P Press )

MC CA RT HY , P.J.

, VA N B RE UG EL , W.J.M.

, SP IN RA D, H . &

D JO RG OV SK I,

S. 198 7 Ap], 321, L2 9

ME TC AL FE , N.

, SH AN KS , T.

, CA MP OS , A.

, FO NG , R . &

G AR DN ER , J .P .

1996 Nature, 383, 23

6

MI LL S, B . &

S LE E, O.

B. 195 7 Aust.].

Phys., 10 , 16 2

PE AC OC K, J.

A.

, COLE , S.

, NO RB ER G, P . et al. 200 1 Nature, 410, 16

9

RYLE, M . 195 5 Observatory, 75, 13

7

SC HE UE R, P . A . G . 195 7 Proc.

Camb. Phil.

Soc., 53 , 76 4

1974 MNRAS , 1 6 7, 329

1975 in Stars an d Stellar Systems, vol.

9 o f Galaxies and

the Universe, eds. A

. R . Sandage ,

M. Sandag e an d J . Kristian (Chicago: Universit

y o f Chicag o Press )

SH AK ES HA FT , J.

R.

, RY LE , M.

, BA LD WI N, J.

E.

, EL SM OR E, B. &

TH OM SO N, J.

H.

, 195 5 Mem . RAS , 67 , 10 6

SULLIVAN, W . T . Il l 1 9 84 The Early Years o f Radio Astronomy (Cambridge

: Cambridg e

University Press)

WAGONER, R.V.

, FOWLER , W . A . &

H OY LE , F . 196 7 Ap], 14 8 , 3

WALL, J . V . 199 6 i n Extragalactic Radio Sources,

IAU Symposium

No. 175 , eds .

R. Ekers , C . Fant i an d L . Padriell i (Dordrecht:

Kluwer Academi c Publishers

) p . 54 7

9 .1

Alternative ideas i

n cosmolog y

JA YA NT V . NA RL IK AR

Inter-University Centre for Astronomy and Astrophysics,

Pune

It i s show n tha t i n cosmology , a

s i n th e res t o f science , th e evolutio n o

f

observational evidenc e an

d theoretica l concept

s ha s ofte n le d t o th e accep -

tance o f idea s tha t wer e onc e considere d outlandish

. Fre d Hoyl e himsel f wa s

responsible fo r generatin g severa

l suc h ideas , althoug h h

e wa s muc h ahea d

of hi s time . Her e som e o f thos e idea s ar e outlined , idea

s tha t wer e though t

to be unrealisti c a

t th e time they were proposed , bu

t whic h hav e no w bee n

assimilated into mainstream

cosmology. A general commen t tha

t emerge s

from such examples i

s tha t highl y creativ e individual s wh

o ar e fa r ahea d

of thei r tim e d o no t ge t th e recognitio n the

y deserv e onc e thei r idea s ar e

accepted as standard .

Introduction

The origina l titl

e suggeste d fo

r m y contributio n t

o th e meetin g dedi

-

cated to the memor y o

f Fre d Hoyl e ha d bee n 'Alternativ e cosmologies'

. I changed

it t o th e presen t titl e fo r th e followin g reason

. Ther e hav e bee n occasiona l re

-

views o f alternativ e cosmologie

s fro m tim e t o time , th e mos t recen t on e bein g

by myself an d Padmanabha n (2001)

. Fre d himsel f ha d bee n th e originato r o

f a

few alternative

cosmologies. However , i

n th e presen t context , whil e highlightin g

his contribution s t

o cosmolog y i

t i s mor e interesting to

look at idea s o n specific

topics o f cosmologica l interest

rather tha n a t cosmologica l model

s pe r se .

In the decade followin g th

e observation s o

f th e microwav e backgroun

d ra -

diation by Penzias an d Wilso n (1965) , mos t cosmologist s mad

e u p thei r mind s

that th e so<alle d Big-Ban g cosmolog

y provide s th e correc t framewor k i

n whic h

The Scientifi c Legac y o f Fre d Hoyle , ed . D . Gough .

Published by Cambridge Universit y Press

. © Cambridge Universit

y Pres s 2004 , 127

(2)

Alternative ideas i n cosmolog y 12

9

to describe th e histor y an d large-scal e structur

e o f th e Universe . Althoug

h ther e

existed a rang e o f possibl e model s withi n thi s framework , the

y becom e collec -

tively known as 'standar d cosmology'

. An y othe r cosmologica l mode

l tha t di d no t

fall withi n th e standar d framewor

k wa s identifie d a

s 'non-standar d cosmology'

.

A revie w entitle d 'Non-standar d cosmologies

' b y mysel f an d Kembhav i (1979

)

summarized how such models deal t wit h th e variou s theoretica l concept

s i n

cosmology and the available observationa

l data .

However, i n th e 1980 s th e adjectiv e 'non-standard

' (whic h ha s somewha t neg

-

ative connotations ) wa

s replace d b y 'alternative' , i

t bein g presume d tha

t th e

alternative was wit h respec t t o standar d cosmology .

Nevertheless, th e adjectiv e 'standard

' i s itsel f a misnomer, sinc

e i t implie s

something stable an d invarian t wit

h respec t t o whic h other s ca n b e measured .

(The dictionar y meanin

g o f 'standard ' i

s typicall y 'o

f recognize d authorit

y o r

prevalence'.) I n a highly critical articl e o n cosmolog y Disne

y (2000 ) ha s give n

reasons a s t o wh y thi s adjectiv e i s inappropriat e i

n th e sens e i n whic h i t i s use d

in the context o f cosmology . Indeed

, h e ha s argue d tha t th e standar d mode

l i n

cosmology is nowher e a

s secur e an d laboratory-teste d a

s th e standard model i

n

particle physics.

That th e standar d cosmolog

y ha s evolve d considerabl y i

n th e fou r decade s

since th e 1960 s i s see n fro m th e variou s ne w concept s i t ha s acquire d durin g

that period , namely , inflation , dar

k matter , non-baryoni c matter

, cosmologica l

constant o r quintessenc e o

r dar k energy , ne w physic s involvin g mor

e than four

dimensions, etc . Indeed , idea s tha t wer e onc e considere d 'non-standard

' hav e

now become acceptable a

s 'standard' .

It make s sens e therefor e t

o concentrat e her

e o n such alternative

ideas i n

cosmology, particularl y thos

e wit h whos e origi n Fre d Hoyl e wa s associated . A

s I

propose t o show , thes e idea s wer e no t accepte d a

t th e tim e the y wer e proposed ,

but graduall y foun

d thei r way into the 'standard ' categor

y as cosmology

evolved.

Before proceedin g further

, however , i

t i s instructiv e t

o tak e a brief loo k a t th e

historical evolutio n o

f cosmologica l idea

s fro m earlie r times .

From 9.2 Aristarchus t

o Hubbl e

For viewin g histor

y on e ma y defin e 'standard ' a

t an y epoc h a s repre -

senting ideas believe d b

y th e majorit y a

t tha t epoch , whil e 'alternative ' woul

d

stand for idea s significantl y differen

t fro m th e standar d on

e (prevailin g a

t th e

time) bu t believe d b y a minority. A

s wil l shortl y b e seen , thi s distinctio n betwee

n

'standard' an d 'alternative ' i

s epoch-dependent . A

n ide a fallin g withi n th e alter -

native baske t a t epoc h t might wel l b e transferred to

the standard basket a t a

later epoc h t + A(

A >

0). Naturally , i

f A » huma n life-span , the

n w e hav e t o

conclude tha t th e originator(s ) o

f th e alternativ e idea(s

) faile d t o ge t credi t fo r

them while stil l alive .

Take Aristarchu s (c.

310-230 BC), for example, who

argued that the Earth

not

only spins abou t it s axis , bu t i t als o goe s aroun d th e Sun . T o prov e hi s point ,

he propose d wha

t i s toda y know n a s th e parallax method fo

r measurin g distance

s

of nearb y stars . Th e tes t faile d no t becaus e th e underlyin g hypothesi

s wa s fals e

but becaus e th e stella r distance s wer

e underestimate d an

d th e observationa l

techniques wer e no t sensitiv e enoug h t o measur e th e actua l parallax .

The standar d cosmolog

y o f thos e time s firml y believe d a geocentric universe

.

That belie f remained intact til

l Copernicu s (A

D 1473-1543 ) appeare

d o n th e

scene. However , it

took nearly a centur y befor e hi s alternativ e ide

a o f th e helio -

centric cosmology

became accepted. Thu

s fo r Copernicus , A

= 10 0 yr . S o fa r a s

Aristarchus i s concerned , hi

s contributio n ha

s bee n belatedl y recognize

d rela -

tively recently. Hi s bus t i n hi s home-tow n o

f Samo s carrie s th e inscription :

Aristarchus o f Samos..

. 320-23 0 BC..

. Firs t t o discove r th e Eart h

revolves aroun d th e Sun..

. Copernicu s copie

d Aristarchu s 153

0 AD..

,

Shall w e sa y tha t A(Aristarchus ) =

23 centuries?

While th e heliocentri c theor

y becam e standard , i

t to o ha d it s factua l limita -

tions. B y th e beginnin g o

f th e twentiet h century

, Herschel' s pictur

e o f th e Su n

close t o th e centr e o f th e Galax y ha d becom e standard , an

d wa s adopte d b y J . C .

Kapteyn in what ha d becom e know n a s th e 'Kaptey n universe'

. Harlo w Shapley' s

measurements o f distribution s an

d distance s o

f globula r clusters , however , le

d

to the realization

that th e Su n mus t b e wel l awa y (~8-1 0 kpc ) fro m th e Galacti c

Centre. I n thi s cas e on e ma y se t A at ~1 0 years , an d Shaple y coul d ge t th e credi t

during his lifetime .

An alternative

idea that rouse d considerabl e passio

n an d controvers y bega

n

with Immanuel Kan

t (1724-1804) , an

d i s know n a s Kant' s 'islan d universe ' hy

-

pothesis. Thi s hypothesi s envisage

d th e Univers e a

s a limitless system

, lik e a

vast ocean , i n whic h galaxie s lik e ou r Milk y Wa y existe d lik e islands . Obser -

vations ha d indee d reveale d a

number o f nebulae , cloud-lik e fain

t bu t lumi -

nous systems , som

e o f whic h (lik e th e Andromed a Nebula

) wer e claime d b y a

small minorit y t

o b e distan t galaxies , th

e Kantia n islands . Th e standar d vie w t o

which eve n Shaple y subscribe d was

, however , tha

t everything observed

till tha t

date was par t o f ou r Milky Way, whic

h wa s envisage d a

s th e Grea t Galaxy . Th e

above alternative claim

was dismisse d a

s unfactual . See

, fo r example , th

e follow -

ing extract fro m th e popula r 190 5 boo k calle d Th e System of th e Stars by Agnes

Clerke:

(3)

The questio n whethe

r nebula e ar e externa l galaxie s hardl y an y longe r

needs discussion . I

t ha s bee n answere d b

y th e progres s o f research . N

o

competent thinker , wit

h th e whol e o f th e availabl e evidenc

e befor e

him, ca n now , i t i s saf e t o say , maintai n an

y singl e nebul a t o b e a star

system of co-ordinat e ran

k wit h th e Milk y Way..

.

The not e o f finalit y an d certaint y indicate

s th e confidenc e fel

t b y th e majorit y

in the correctnes s o

f th e standar d picture

. Withi n tw o decades , however , thi

s

view had to be abandone d i

n th e fac e o f growin g evidenc e agains

t i t an d th e

lack o f dat a i n it s favour . Le t u s firs t loo k a t th e latter .

The mor e accurat e metho

d o f measurin g th

e distances using

the period -

luminosity relation for th e Cepheids , whic

h ha d bee n introduce d earlier

, wa s

applied by Hubble (1926 ) t o M3 1 an d M33 . H e foun d 5 0 variable s i n M31 , o f

which 40 were cepheids , an

d 3 5 cepheid s i n M33 . In addition, ther

e wer e know n

to be nin e i n NGC6822 , an

d Shaple y ha d measure d 10

5 in the Smal l Magellani c

Cloud (SMC).

Of course, Hubble realize

d an d stresse d tha t thes e distances would

be affecte d

by any change i n th e zer o poin t o f th e period-luminosit y relatio

n a s i t ha d bee n

derived by Shapley. Still

, th e ver y larg e distance s derive

d fo r th e spiral s wer e

compatible wit h man y attempts to

determine th e prope r motion of th

e spirals ,

which ha d alway s le d t o nul l result s ( a velocit y o f 100 0 k m s"

transverse t 1

o

the lin e o f sigh t woul d correspond to

an annual prope r motio n o f th e orde r o f

0".0007, a value fa r belo w wha t coul d b e measured) .

However, ther e wa s a stumbling bloc

k which led

many to question

these

large distances . Thi

s aros e fro m th e claim s b y A . va n Maane n (1916-30 ) a

t Moun t

Wilson to have determine d prope

r motion s i n th e spiral arms o

f a number o

f

nearby spiral galaxie s includin

g M33 , M81 , M101 , NGC2403 , 4051

, 4736 , 5055 ,

and 5195. A t a n indicativ e distanc

e o f 10 light year 6

s a n annua l motio n ~0".01 ,

which was o f th e orde r o f wha t wa s bein g claimed , correspond s t

o a velocity of

~15000 km s"

. Thu 1

s va n Maanen' s result

s corresponde d t

o period s o f rotatio n

of th e spirals , i f the y were assumed

to have size s simila r t o th e Milk y Way , o f th e

order 10 years o 7

r less , implyin g ejectio

n o f matte r o n simila r timescales , s

o tha t

the spiral s woul d disintegrat e i

n time s o f thi s order . However , late

r observation s

could not confir m thes e claims , an d the y graduall y fade

d away .

Side b y sid e wit h th e lac k o f confirmatio n o

f prope r motions , th e ne w metho d

of measurin g distance

s usin g th e Cephei d variable s le

d Hubbl e t o th e conclusio n

that nebula e lik e th e Andromed a Nebul

a (M31) , M33 , an d severa l other s li e wel l

beyond the Galaxy . An d s o th e Kantia n islan d univers e hypothesi s bega

n t o gai n

credibility. I f w e dat e thi s chang e o f paradig m t

o hav e take n plac e i n th e mi d

1920s, the n A(Kant ) = 1.5 centuries.

Alternative idea s i n cosmolog y 13

1

The abov e historica l backgroun

d ma y b e kep t i n min d whil e evaluatin g th

e

cosmological contribution s o

f Fre d Hoyle .

93 Interaction

of particl e physic s wit h cosmolog y

It i s generall y assume

d tha t particle physicists an

d cosmologist s firs

t

got togethe r i

n th e 1980s , th e latte r usin g idea s fro m particl e physic s a t ver y

high energy in order t o addres s issue s lik e th e origi n an d evolutio n o

f large -

scale structure . However

, th e firs t cosmolog y t

o dra w heavil y o n particl e physic s

was th e Steady-Stat e cosmology

, which explored

this frontie r are

a i n 195 8 a t

the Pari s Symposiu m o

n Radi o Astronomy . Th

e 'ho t universe ' o

f Gol d an d Hoyl e

(1959) wa s th e outcome . Briefly

, th e ide a wa s a s follows .

In the Steady-Stat e cosmology

, th e Univers e maintain

s a steady densit y despit e

expansion, b y continuou s creatio

n o f matter . Th e amoun t o f matte r expecte d t o

be produce d wa

s estimate d t

o b e extremel y small

, a t a rate ~10~

g cm" 46

s~ 3

. 1

Nevertheless, th e questio n was

, i n wha t for m di d thi s ne w matte r appear

? Gol d

and Hoyle propose d th

e hypothesi s tha

t th e create d matte r wa s i n th e for m o f

neutrons. Th e creation of neutron

s doe s no t violat e an y standard conservation

laws o f particl e physic s excep t th e constanc y o

f th e numbe r o

f baryons . Al -

though this wa s considere d a

n objectio n i

n 1958 , toda y th e numbe r o f baryon s

is n o longe r regarde d a

s strictl y invariant . Indeed

, a s w e shal l se e later , scenar -

ios based on non-conservation

of baryon s ar

e bein g propose d i

n th e contex t o f

the ver y earl y Univers e t

o account for th

e observe d numbe

r o f baryon s i n th e

Universe.

In the Gold-Hoyl e pictur

e th e create d neutro n undergoe s a

beta decay :

n->- p + e + v .

(9.1)

The conservatio n o

f energ y an d momentu m result

s i n th e electro n takin g u p

most of the kineti c energ y and thereby

acquiring a hig h kineti c temperatur e

of ~10 K. Gol 9

d an d Hoyl e argue d tha t suc h a high temperature

produced inho-

mogeneously would lead to the workin g o

f hea t engine s betwee n th e ho t an d

cold regions, whic

h provid e pressur e gradient

s tha t resul t i n th e formatio n o

f

condensations o f siz e >

50 Mpc. I t wa s already known

that pur e gravitationa l

forces ar e no t abl e t o provid e a satisfactory

picture o f galax y formatio n i

n a n

expanding universe. Th

e temperatur e gradient

s se t u p i n th e ho t univers e o f

Gold an d Hoyl e hel p i n thi s process .

The resultin g system

, however , i

s no t a single galaxy , bu t a supercluster o

f

galaxies containin g ~10

-10 3

members. Suc 4

h large-scal e inhomogeneitie

s i n th e

distribution of galaxie s cautio n u s agains t applyin g th

e cosmologica l principl

e

(4)

too rigorously. Fo

r example , i

f w e ar e i n a particular supercluster

, w e expec t t o

see a preponderance o

f galaxie s o f age s simila r t o tha t o f our s i n ou r neigh -

bourhood out t o sa y 2 0 o r 3 0 Mpc . Thu s i t wil l no t b e surprisin g i

f ou r lo -

cal sampl e yield s a n averag e ag e muc h large r tha n th e universa l averag

e o f

(SHo)- « 3 1

x 10%

years. J

Although newly created electrons hav

e a kinetic temperature

of ~10 K, 9

the temperatur e tend

s t o dro p becaus e o f expansion . Th

e averag e tempera -

ture i s three-fifth s o

f thi s value , tha t is , aroun d 6 x 10 K. I 8

t wa s suggeste d

by Hoyle i n 196 3 tha t suc h a hot intergalacti c mediu

m woul d generat e th e

observed X-ray background . However

, quantitativ e estimate

s b y R . J . Goul d

soon showed that th e expecte d X-ra

y backgroun d i

n th e ho t univers e woul d

be considerabl y highe

r tha n wha t is actually

observed, thu s makin g the hot

universe untenable . Th

e present-da y backgroun

d measurements , however

, d o

not rul e ou t suc h a hot univers e fo

r h « 0.5 0

. Astrophysicist s toda

y are, how-

ever, incline d t

o loo k fo r othe r explanation s fo

r th e origi n o f th e X-ra y back -

ground.

Although it i s no w discredited , th

e ho t univers e mode l wa s th e firs t exercis e i n

linking particle physic s (neutro n decay ) t o th e formatio n o

f large-scal e structures

in the Universe .

Notice, however , th

e differenc e i

n approac h her

e fro m th e standar d astroparti

-

cle physics . Th e latte r relie s o n unteste d extrapolatio n o

f particl e physic s couple d

with assumed

initial condition s fo

r seedin g large-scal e structure

and seeks t o ar -

rive a t th e presen t hierarch y o

f structure s throug

h severa l regime s o f evolution ,

neither al l directl y observabl e no

r analyticall y calculable

. Th e forme r take s th e

process o f bet a decay , whic h i s wel l teste d i n th e laborator y an

d build s o n i t i n

timescales o f th e orde r o f th e present-da y expansion

, t o arriv e a t th e supercluste r

scale structure .

In the 1960 s cosmologist s by-and-larg

e ha d no t gon e beyon d classica l gravit y

to address th

e proble m o

f structur e formation

; no r ha d the y (a s see n i n th e

following section) gon

e t o th e exten t o f acceptin g structur

e o n th e scal e o f

superclusters. Th e appea l t o a particle physics interactio n i

n th e abov e mode l wa s

therefore viewe d wit h scepticism , and

the outcome in the

form of supercluster s

was considere d irrelevan

t t o cosmology .

It i s somewha t ironica

l tha t toda y cosmologist s accep

t uncriticall y concepts

like GUT s an d supersymmetry , a

phase transitio n a

t 10 GeV, non-baryoni 1 6

c dar k

matter (col d o r hot) as foundation s o

n whic h t o buil d th e evolutio n o

f th e Uni -

verse acros s a decrease o

f 8 7 orders of magnitude in

density and 29 orders o f

magnitude in temperature, whe

n none of the physics of

the initial epochs is

tested in

a laboratory.

Moreover, supercluster s are

no longer under a

taboo, but are wel l

accepted. Thu s i n thi s case , w e hav e A = 2 0 year s fo r Fred .

Alternative idea s i n cosmolog y 13

3

9.4 The rol e o f supercluster s i

n radi o sourc e count s

In 19 6 1 Marti n Ryl e an d hi s colleague s a

t th e Mullar d Radi o Astronom y

Observatory in Cambridge announce

d th e result s o f th e 4 C radi o sourc e survey ,

claiming that th e sourc e count s ha d a super-Euclidean

slope tha t disprove d th

e

Steady-State theory . I n a uniform distribution

of source s i n a Euclidean

universe

the numbe r N

of source s brighte r tha n flu x densit y S goes a s S"

- 1

, That 5

is, i n

the log N - log S plo t th e slop e o f th e numbe r coun t N(

> S ) curv e wil l b e -1.5 .

Ryle reporte d a

slope o f -1.8 , wherea s th

e Steady-Stat e theor

y wa s expecte d t

o

give a slope beginnin g wit

h -1.

5 a t hig h S, and flattening

at lowe r value s o f S .

In January of 1961 , Ryl e state d thes e point s t o clai m tha t th e Steady-Stat e theor

y

was disproved .

I ha d joine d a s Fred' s researc h studen t barel y si x month s earlier , an d h e aske d

me t o develo p a counter t o Ryle' s clai m alon g th e followin g lines

:

(a) Assum e tha

t th e Univers e i

s inhomogeneou s o

n th e scal e ~50Mp c o

f

superclusters. Thu s ther e wil l b e mor e galaxie s i n a supercluster, an

d

fewer (ideall y zero

) i n th e voi d outsid e it .

(b) Assum e tha

t a galaxy becomes a

radio sourc e a s i t ages , i.e . th e

probability P tha t th e galax y become s a radio source increase s wit

h

age T.

He suggeste d a

n empirica l formul

a P a exp(4Hr) .

The supercluste r ide

a ha d com e fro m th e Gold-Hoyl e ho

t univers e model

.

The notio n o f age-dependenc e o

f a radio sourc e propert y wa s base d o n th e then -

available indication s tha

t radi o source s do not aris e fro m collidin g galaxie

s

but ar e generall y associate

d wit h elliptica l galaxie

s (whic h wer e considere d

older tha n spirals) . I n an y case , Fre d Hoyl e ha d maintaine d th

e reasonabl e

stand that on e shoul d no t dra w cosmologica l conclusion

s fro m population s

of source s whos

e physic s wa s stil l unknown . Eve

n toda y th e power-hous e o

f

a doubl e radi o sourc e an d th e genesi s o f it s jet s ar e hardl y wel l under -

stood.

With these postulates, whic

h i n n o wa y altere d th e basi c tenet s o f th e Steady -

State cosmology , w

e wer e abl e t o demonstrat e tha

t a n 'average ' lo

g N - lo g S

curve wil l hav e a super-Euclidean

slope a t hig h flu x level s a s foun d b y Ryl e

et al.

(Hoyle an d Narlika r 1961)

.

The poin t tha t Fre d wishe d t o emphasiz e wa

s that , becaus e o f supercluster -

scale inhomogeneity , th

e slop e o f th e lo g J V - log S curv e fluctuate s a

t larg e

values o f S depending

on the location of th

e observer , althoug

h a t lo w S it

settles dow n t o th e cosmologica l sub-Euclidea

n valu e predicte d analytically

. Thi s

expectation was late r confirme d observationally

by deeper survey s (Kellerman n

and Wall 1987) .

(5)

To demonstrat e thi

s fluctuation , Fre

d an d I thought o

f carryin g ou t N-bod y

Monte Carl o simulation s o

n a n electroni c computer

. Th e Cambridg e EDSA

C wa s

manifestly inadequate fo

r thi s computation , bu

t Fre d ha d acces s onc e a week

to an IBM 7090 in London. S

o wit h a few weekly visits t o Londo n I was abl e t o

carry ou t thi s demonstration . Thi

s wa s probably the firs

t compute r simulatio

n

in cosmology

(Hoyle an d Narlika r 1962) .

A grea t dea l wa s mad e o f th e steepnes s o

f th e lo g N - lo g S curve a t hig h

flux end , wit h the claim that it implies evolution

, whic h is inconsistent wit

h

the Steady-Stat e cosmology

. Kellerman n an

d Wal l (1987 ) hav e commente d o

n

how the effec t wa s blow n ou t o f proportion, being

confined to about 50 0 rela -

tively nearby sources. Indeed

, i f th e resul t wa s cosmologicall y significant

then

one mus t demonstrat e tha

t th e sourc e populatio n ha

s evolve d ove r th e perio d

covered by the survey . Fo r testin g evolutio n on

e need s t o kno w th e redshift s

of thes e sources . Ver y fe w redshift s wer

e know n i n 1961-2 . B y th e mi d 1980s ,

however, mos t source s i n th e SC R catalogu e ha

d their redshifts determined

. Us -

ing this additiona l informatio

n DasGupt a e

t al.

(1988) wer e abl e t o sho w tha t n o

evolution was necessar y fo

r th e consistenc y o

f mos t Friedman n model

s (wit h

A = 0), wit h th e source-coun t dat

a a s pe r th e 3C R catalogue . DasGupt

a (1988 )

later showe d als o tha t eve n th e Steady-Stat e cosmolog

y wa s consisten t wit

h th e

SCR source count . Simila r complet e redshif

t dat a for the 4C survey

are not yet

available for carrying

out suc h analysis .

In the 1960 s th e concep t o f supercluster s wa

s no t 'standard' , an

d mos t cosmol -

ogists believe d tha

t th e Univers e wa

s homogeneou s o

n scale s large r tha n cluster s

of galaxie s (~

5 Mpc) . Th e idea that th e Univers e ca

n b e inhomogeneou s o

n th e

supercluster scal e introduce s a

larger degre e o f fluctuations in

the predicte d

values o f observationa l test

s o f homogeneou s cosmology

. Evidenc e existe

d fro m

the studie s o f Abel l (1958) , d e Vaucouleur s (1961)

, Shan e an d Wirtane n (1954

) o n

superclusters, bu t nobod y believe d tha t th e Univers e coul

d b e inhomogeneou s

on such a larg e scale . Th e 'complication ' introduce

d b y inhomogeneit y o

n th e

scale o f supercluster s (~5

0 Mpc ) wa s therefor e fel

t unnecessar y i

n th e opinio n

of man y theoreticians , an

d certainl y a

high price t o pa y i n orde r t o kee p th e

Steady-State theor y alive . I t wa s som e tw o decade s later , i n th e 1980s , tha t th e

existence o f supercluster s an

d void s o n scale s o f 50-10 0 Mp c becam e par t o f

standard cosmology. Thu

s i n thi s instance , I

would set A = 2 5 year s fo r Hoyle' s

belief i n superclusters .

I no w retur n t o th e interactio n betwee

n cosmolog y an

d particl e physics .

9.5 Non-conservatio n o

f baryon s an d negativ e stres s energ y

I understan d tha

t Fre d had sent his first manuscrip t on

the Steady-Stat e

cosmology to a wel l know n physic s journal . I t wa s rejecte d there presumably

because physicist s looke

d upo n continuou s creatio

n a s a violation

of th e la w o f

conservation of matte r an d energy . (Th e reaso n fo r rejectio n cite

d b y th e journal ,

however, wa s a curious one , namel y tha t i t wa s facin g shortag e o

f paper.

) H e

subsequently sent i t t o th e astronom y journa

l MNRAS . I n fact , unlike the versio

n

of Bond i an d Gol d (1948) , th e versio n o f Steady-Stat e cosmolog

y advocate d b

y

Fred Hoyle (1948 ) does not violat e th e abov e conservatio n law

. There , a scalar

field of negativ e energ

y an d pressur e wa

s used , a n ide a tha t physicist s foun

d

abhorrent. I t i s significan t tha

t th e ide a i s no w gainin g popularity , se

e it s recen t

'rediscovery' b y Steinhard t an

d Turo k (2002) . Thu s on e coul d argu e tha t A S 5 0

years fo r thi s ide a originall y propose

d b y Hoyle .

The Gold-Hoyl e ho

t univers e mode

l ha d continuou s creatio

n o f neutrons .

In general Hoyl e believe d tha t baryon s (i n preferenc e t

o antibaryons ) woul

d b e

created. Thi s break s th e baryon-numbe r conservatio

n la w a s wel l a s baryon -

antibaryon symmetry, whic

h wer e considere d sacrosanc

t i n th e 1960s . Thu s

when our pape r (Hoyl e an d Narlika r 1966a

) o n non-conservatio n o

f baryon s i n

cosmology came u p th e physicist s wh

o too k not e o f i t argue d tha t th e ide a

violated the abov e principles .

Again it i s significan t tha

t wit h th e approac h t

o Gran d Unifie d Theorie s

particle physicists themselve

s foun d thes e principle s n

o longe r necessary . Indee

d

they were highl y constrainin g t

o Big-Ban g cosmolog y i

f on e wishe d t o explai n

the observe d baryon-antibaryo

n asymmetr y an

d th e baryo n t o photo n ratio . I n

the end , high-energ y particl

e physicist s hav

e droppe d thes e symmetries .

On one occasio n Fre

d Hoyl e himsel f answere d th

e criticis m o

n baryo n non -

conservation by stating that thi s i s th e consequence of broke

n symmetr y whic

h

perpetuates itself . Th e C-fiel d whic h mediate s i

n th e creatio n proces s ma y hav e

internal degree s o

f freedo m tha t favou r matte r ove r antimatter . Sinc

e i n late r

(post-1964) version s o

f th e C-field , actio n a t a distance formulatio

n wa s use d

(see Hoyl e an d Narlika r 1964) , on e coul d argu e tha t th e informatio n o

f broke n

symmetry in one spacetim e even

t coul d b e carrie d alon g ligh t cone s t o th e

future and thus spread all ove

r th e Universe .

If w e dat e th e notio n o f baryon non-conservation

in cosmology

to the Hoyle -

Narlikar pape r o f 1966 , an d loo k a t th e 197 9 publicatio n b

y Steve n Weinber g

(entitled 'Baryon-lepton

non-conserving processes'), w

e ma y se t A = 1 3 year s fo r

this idea . I n fac t al l thre e o f th e trilog y o f paper s publishe d b

y Hoyl e an d m e

in 1966 hav e foun d echoe s i n subsequen t year

s a s w e shal l se e i n th e followin g

two sections.

Inflation 9.6 and

the bubbl e univers e

I no w com e t o th e fiel d theor y wit h which Hoyle an

d I worked in order t o

derive th e physica l propertie s o

f th e Steady-Stat e univers

e relate d t o gravit y an d

(6)

matter creation . Th

e C-fiel d theory , a s i t i s called , wa s i n fac t base d o n th e scalar -

field formulation

provided b y M . H . L Pryce i n 196 1 a s a private communication.

Like Hoyle' s origina l approach , th

e C-fiel d theor y als o involve d addin g mor e

terms t o th e standar d relativisti

c Einstein-Hilber t actio

n t o represen t th

e phe -

nomenon of creatio n o

f matter . Usin g Occam' s razor , th e additiona l fiel

d t o b e

introduced was a scalar fiel d wit h zer o mass and zero charge . W e denot e thi s

field by C an d it s derivativ e wit

h respec t t o th e spacetim e coordinate

x' b y C . f

The actio n i s the n give n b y (wit h c — spee d o f light) ,

A = -—

/ f CiC'^gd

K-^ 4

/C.da'. a

(9.2)

The additiona l term

s (thir d an d fourth ) o n th e right-han d sid

e ar e th e C-fiel d

terms. Not e tha t th e last term of (9.2 ) i s path-independent . I

f w e consider the

world line of particl e a between

the en d point s A I an d A , w 2

e hav e

C

i:

da'=C(A j

)-C(A 2

). 1

(9.3)

Normally such path-independent term

s d o no t contribut e t

o an y physic s deriv -

able from the action principle. S

o wh y includ e suc h a term?

The answer t o

this questio n lie

s i n th e notio n o f 'broken ' worl d lines . A theory that discusse s

creation (or annihilation ) o

f matte r pe r s e mus t hav e worl d line s wit h finit e be -

ginnings o r end s (o r both) . Th e C-fiel d interactio n ter

m pick s ou t precisel y thes e

end points o f particl e worl d lines . I f w e var y th e worl d line s o f a and consider

the change i n th e actio n A in a volum e containin g th

e poin t A

! wher e th e worl d

line begins, w e ge t a t A I (whic h i s no w varied )

da

1

— gj k - Cf c =

0. a ds

(9.4)

This relatio n tell

s u s tha t overall energy an

d momentum are conserved

at th e point

of creation.

The 4-momentu m o

f th e create d particl e i s compensate d b

y th e 4 -

momentum of the C-field. Clearly

, to achieve

this balanc e the

C-field must hav e

negative energy. W e shal l retur n t o thi s point later. W

e als o not e that , sinc e th e

interaction term i s path-independent , th

e equatio n o

f motio n o f a is stil l tha t

of a geodesic. Th

e Pryc e formulatio n i

s therefor e a

masterly way of dealin g wit h

creation (and annihilation) o

f matte r withou t violatin g th

e conservatio n laws

.

The constan t /

in the action (9.2) i s a coupling

constant. Th e variatio n o

f C

gives the source

equation in the form

C&

= cf-'n , (9.5 )

where n i s th e numbe r o f ne t creatio n event s pe r uni t prope r 4-volume .

Alternative ideas i n cosmolog y 13

7

Finally, th e variatio n o

f g leads t jk

o th e modifie d Einstei

n fiel d equations

where Tj is the matte r tenso r whil e

(9.6) (9.7)

Again we note that T

°° < (

0 fo r / > 0 . Thu s th e C-fiel d ha s a negative

energy

density that produce s a

repulsive gravitational effect

. I t i s thi s repulsiv e forc

e

that drive s th e expansio n o

f th e Universe . Th

e abov e effec t ma y resolv e on e

difficulty usually associated

with the quantum theory of negativ e energ

y fields .

Because suc h field s hav e n o lowes t energ y state , the y normally do

not for m stabl e

systems. A cascading

into lower an d lowe r energ y state s woul d inevitabl y occu

r i f

we pertur b th e fiel d i n a given state of negativ e energy

. However , thi

s conclusion

is altere d i f w e includ e th e feedbac k o

f (9.7 ) o n spacetim e geometr

y throug h

(9.6). Thi s feedbac k result s i n th e expansio n o

f spac e an d i n th e lowerin g o

f th e

magnitude of fiel d energy . Thes e tw o effect s ten d t o wor k i n opposit e direction s

and help stabilize th e system .

Using the Robertson-Walker line

element an d th e assumption that a

typical

particle created by the C-field has mass m, w e ge t th e followin g equation

s ou t

of th e abov e set :

C = me , 2

ma )

(9.9) (9.10)

S + kc 2 2

(9.11)

It i s eas y t o verif y tha t th e steady-stat e solutio

n follow s fro m thes e equation s fo

r

3-Tin „ T

k = 0, S = e

", p H

= A (9,12) , =

Notice tha t bot h H O an d p are 0

given in terms o f th e elementar y creatio

n process :

that is, in term s of the couplin g constan

t / and the mass of the particl e created .

Thus th e Hoyl e approac h provides

the quantitative

information lacking in the

deductive approac h vi

a th e Perfec t Cosmologica l Principl

e o f Bond i an d Gold .

(7)

138 Jayan t V

. Narlika r

A first-orde r perturbatio

n o f th e abov e equation s an

d o f th e steady-stat e so

-

lution also tells u s tha t th e solutio n i s stable . Indeed , a stability

analysis bring s

out th e ke y rol e playe d b y th e creation process. Thi

s tell s u s tha t th e create d

particles hav e their world

lines alon g the normals to

the surface s C = constant .

Hoyle ha s argue d tha t suc h a result give s a physical justificatio

n fo r th e Wey l

postulate; i t tell s u s wh y th e worl d line s o f th e fundamenta l observer

s ar e or -

thogonal t o a special famil y o f spacelik e hypersurfaces

. I n th e C -field cosmolog y

these hypersurface s are

not jus t abstrac t notion s but are see n to have a physical

basis. W e therefor e argue

d tha t eve n i f th e Univers e wa

s considerably different

from the homogeneou s an

d isotropi c for

m i n th e remot e past , th e creatio n pro -

cess woul d driv e i t t o tha t stat e eventually . Years

later thi s ide a resurface d i

n

the contex t o

f inflatio n a s th e 'cosmi c no-hai r conjecture' , namel

y tha t a n infla -

tionary universe wipe

s out the initia l irregularitie s and

leads to homogeneity

and isotropy. I

t ha s bee n recognize d b

y Barro w an d Stei n Schabe s (1984 ) tha t

this notion is ver

y simila r t o th e abov e resul t derive d b y u s i n th e earl y sixtie s

(Hoyle an d Narlika r 1963

; A - 2 1 years!) .

However, a s i t turne d out , Fre d ha d anticipate d th

e ver y ide a o f inflatio n i

n

the mi d 1960s . Thi s wa s publishe d i

n a paper wit h mysel f a s coautho r (Hoyl e an d

Narlikar 1966b ) wher e w e discusse d th

e effec t o f raisin g th e couplin g constan

t

/ b y ~10 . A 20

s th e formula e (9.12

) show , w e woul d the n hav e a Steady-State

universe o f ver y larg e densit y (p ^ 1CT 0

g cm~ 8

) an 3

d ver y shor t timescal e (H,,"

~ 1

1 year!) . I f i n suc h a dense universe creation

is switche d of

f i n a local region ,

that is , i f w e locall y hav e a phase transitio n fro

m th e creativ e t o th e non-creativ e

mode:

C<

=0 ,

then this loca l regio n wil l expan d accordin g t

o th e formul a

oc S(t) 1 1 +

(9.13) (9.14)

where t i an d t o ar e constants . Not

e tha t thi s i s th e 'non-singular ' analogue

of

the Einstein-d e Sitte

r mode l o f standar d cosmolog y (no

w mor e popularl y know

n

by the parameter s £2

tter = ma

1, &A = 0) , whic h ha s S(t ) a t . Indeed 2/3

, fo r smal l

to, th e solutio n rapidl y approache s th

e Einstein-d e Sitte

r form . Bein g les s dens e

than the surroundings , such

a regio n wil l simulat e a

n ai r bubbl e i n water .

Although the basi c physic s i s different , th

e similarit y betwee

n thi s mode l an d

the inflationar y mode

l tha t cam e int o fashio n 1 5 year s late r i s obvious . I n bot h

models a phase transitio n create

s th e bubbl e tha t expand s int o th e oute r d e

Sitter spacetime . I

n th e Steady-Stat e universe

, suc h bubble s coul d aris e i n man y

places a t differen t epoch s fro m t = -o o t o t = +00 .

According to this model , thi s bubbl e i s al l tha t w e se e wit h ou r survey s o f

galaxies, quasar s an d s o on . Henc e ou r observation s tel

l u s mor e abou t thi s

unsteady perturbation

than about th e ambien t Steady-Stat e universe

. Ther e are ,

however, observabl e effect

s tha t giv e indications of th

e hig h valu e o f / . Fo r

example, w e showe d tha t particle creation i

s enhanced near already

existing

massive object s an d tha t th e resultin g energ

y spectru m o

f th e particle s woul

d

simulate tha t o f high-energ y cosmi

c rays . Th e actua l energ y densit y o f cosmi c

rays require s th

e hig h valu e o f / chosen here.

Thus takin g Fred' s anticipation of inflatio

n i n 1966 , w e ma y se t A = 1 5 years .

9.7 Nucle i o

f galaxie s

The followin g extrac

t fro m th e abstrac t o f th e Hoyl e an d Narlika r (1966c )

paper wil l indicat e Fred' s idea s i n th e mi d 1960 s o n th e dynamic s o

f galax y

formation:

We sugges t tha t the condensation of...galaxie

s depend s on the

presence o f inhomogeneities , i

n particula r tha

t a galaxy is forme d

around a central mass concentration

. Becaus e th e Einstein-d e Sitte

r

expansion la w i s th e limitin g cas e betwee n th e expansion to

infinity at

finite velocit y an

d a fall-back

situation, i n which the expansio

n stop s

at som e minimu m bu

t finit e density , a central condensatio n wit

h

mass appreciabl y les

s tha n tha t of the associate d galax

y suffice s to

prevent continuin g expansion

. A mass o f 10 M 9

, fo G

r example , wil

l

restrain a total mass o

f ~10 M 12

from Q

expanding beyond normal

galactic dimensions..

.

In the mi d 1960 s th e notio n o f a massive blac k hol e a t th e nucleu s o f a galaxy had

not receive d 'standar

d sanction"

, an d s o th e ide a remaine d relativel

y unknown ,

especially because i t wa s propose d i

n th e contex t o f a Steady-State universe

. I

briefly elaborate o

n th e ide a tha t th e abov e abstrac t indicates , whil

e stressin g

that th e argument s wer

e mad e i n th e mi d 1960s .

The cosmologica l basi

s o f thi s work was discussed

in the preceding paper

(Hoyle an d Narlika r 1966b) , whic h suppose d tha

t th e Universe , o

r a portion of

it, expand s fro

m a n initiall y steady-stat e situation

with p ~ 10~

g cm~ 8

, H" 3

~ 1

10 cm, tha 1 8

t creatio n i s effectivel y zero

during this expansion , an

d tha t th e

Einstein-de Sitte r expansio n la

w hold s i n firs t approximation .

The Newtonia n analogu

e o f th e Einstein-d e Sitte

r la w i s give n b y

f = 2GM/r 2

, (9.15)

in which r i s th e radia l coordinat e o

f a n elemen t o f materia l define d b y th e

(8)

condition that i n a spherically

symmetric situation

about r = 0 , th e mas s inte -

rior t o r is M . Fo r a given sample o f materia l M remains constan

t an d f -»• 0

only as r ->

oo. Equatio n (9.15

) i s a n integra l o f th e second-orde r Newtonia

n

equations, an d th e fac t tha t n o constan t o

f integratio n appear

s represent s th

e

analogue of th e Einstein-d e Sitte

r law .

Next, conside r th

e Newtonia n proble

m o f a n objec t o f mas s //

placed at th e

origin r = 0, all conditions at

a particula r momen

t for a particula r elemen

t of

the cloud being the same as before . Denot e th e valu e o f r at thi s momen t b y r . 0

Then f a t thi s momen t i s (2GM/r ) 0

, a 1/2

s before , an d th e subsequen t motio

n o f

the element i

n questio n i s determined by

2G/J.

r (9.16) 0

The outwar d velocit

y drop s t o zero , an d th e elemen t subsequentl y fall

s bac k

towards r = 0 . Th e maximu m radia

l distanc e r reached max

by the element i

s

given by

r ax = m

(1 + (M/M)}t"o , (9-17 )

and for sufficientl y larg

e M//LI , r ~ Mr max

/M, s 0

o tha t th e fractiona l increas

e

r /r max

, abov 0

e th e radiu s r at whic 0

h th e elemen t ha d th e sam e radia l motio n

as i n th e Einstein-d e Sitte

r case , i s jus t M//it . Thi s facto r i s large r fo r element s

more distant fro m /j.

than for th e inne r part s o f th e cloud , s o th e oute r part s

recede proportionatel y furthe

r tha n th e inne r parts .

What determine s th

e particula r momen

t a t whic h th e Einstein-d e Sitte

r con -

dition, r = (2GM/r) , hold 1/2

s fo r an y particula r sampl

e o f material

? T o com e t o

grips wit h thi s importan t questio

n w e mus t conside r th e relativisti c formulatio

n

of th e problem .

A complet e solutio

n o f a local gravitationa l proble

m ca n b e represente d a

s

a powe r serie s i n th e dimensionles s paramete

r 2G(

M + fi)/r, whic h mus t b e

<5C 1 , thi s bein g wha t w e mea n b y a 'local problem' . Th

e Newtonia n solutio

n i s

of cours e th e firs t ter m i n thi s series . However , i

t i s clea r tha t w e canno t us e

the Newtonia n solutio

n for the effec t of p. if the second-orde r ter

m in 2GM/r

exceeds th e first-orde r ter

m i n 2G/z/r , a s i s possibl e whe n /z/

M <g

; 1 . Henc e th e

Newtonian equations fo

r th e effec t o f /i , namel y equation s (9.16

) an d (9.17) ,

cannot b e use d unles s th e momen t fo r whic h w e us e r = r , r 0

= (2GM/r ) 0

, i 1/2

s

such that 2G/z /2 GM

\

\ I 0

(9.18)

By takin g equalit y i

n (9.18 ) w e d o indee d defin e a particular valu

e o f r ,

corresponding to a specifie d M

, namely , (9.19)

The situatio n i

s tha t th e Newtonia n calculatio

n fo r th e effec t of/

n ca n b e applie d

to the subsequent motio

n o f a n elemen t o f materia l suc h tha t th e specifie d M

lies interio r t o it . Bu t ca n w e us e (2GM/r )i a 0

s th e starting velocity

in this

calculation? No t i n general , becaus e i n genera l th e clou d wil l hav e a t leas t smal l

fluctuations fro m th e Einstein-d e Sitte

r expansion . W

e shal l confin e ourselve s

here to the case i n whic h th e condition s r

* r , r 0

= (2GM/r )*, wit 0

h r given 0

by

equation (9.19), hol d fo r al l M .

From equations (9.17

) an d (9.19 ) w e hav e

^r

~2GM 0 M

/M I M (9.20)

This resul t ha s a number o

f interestin g consequences

. Se t r equal t max

o a typical

galactic radiu s r = 3 max

x 10 cm. The 22

n equatio n (9.20 ) lead s t o

~5 xl 0

5 -

(9.21)

where M is th o

e sola r mass . A central objec

t o f mas s fi = 1 0 M 9

gives M G

=

5 x 10 M 1 1

, whil 0

e fi = 10 M 7

gives M 0

= 2 x 10 M 10

. I Q

t i s o f interes t tha t th e

central condensation s presen

t i n massiv e elliptica l galaxie s ar e know n t o b e o f

order 10 M 9

, an O

d tha t th e tota l masse s ar e believe d t o b e ~10 M 12

. 0

Suppose tha t during expansion

stars ar e forme d fro m gas . Th e star s wil l

continue to occupy the full volum e correspondin g t

o thei r maximu m extensio

n

from the centre, s o tha t th e mas s o f th e star s interio r t o r is give n b y settin g

'"max =r in equation

(9.21). Numerically , w

e hav e

. (9 22)

in whic h r is in kiloparsecs. Evidently

, the mean star densit y at distance

r fro m

the centre is proportiona l t

o M/r , i.e. 3

, t o r~5 . S o lon g a s th e star s hav e every -

where th e sam e luminosit y function

, th e emissivit y pe

r uni t volum e a t distanc e

r i s proportiona l t

o r

~J . Thi s determine s th

e ligh t distributio n i

n a spherical

elliptical galaxy .

To obtain the projected

intensity distribution

we first not e tha t th e abov e

considerations can be applie d to values ofr beyond

normal galacti c dimensions .

There i s n o uppe r limi t t o r so long as w e ar e dealin g wit h a single conden-

sation. Thi s agree s wit h observation , i

n tha t n o ultimat e maximu m radiu

s ha s

References

Related documents

If then the phase transition takes place quickly, the exponential expansion will come to an end and the false vacuum energy will reheat the universe to a

It is clear from the above discussion that if we want to apply the C-field theory to big bang models, we must raise the value of the coupling constant by

Ghourab S,Al – Jabari A, Placental migration and mode of delivery in placenta previa:transvaginal sonographic assessment during the third trimester, Am Saudi Med.2000 Sep

The Seminar endeavor to cover the emerging issues and challenges faced for settlement of disputes through alternative dispute resolution techniques in India.. Objective of

• Market opportunity analysis is a kind of business planning that emphasizes on discovering the future opportunities and evaluating the company’s technological, financial

Much of the differences that have been projected above is due to the fact that a clear statement as to the purpose of a bibliographical reference has been lacking so far. another

The work of revision of the scheme was undertaken by Ranganathan’s associates in the Sarada Ranganathan Endowment for Library Science (SRELS) and a

We learned that the standard Big-Bang cosmology, i.e the Friedmann-Robertson-Walker cosmology is quite a successful theory of our universe, in the sense that it explains most of the