• No results found

Dielectric Relaxation Studies of Ternary Mixtures of Non-Rigid Polar Liquids in the MW Region

N/A
N/A
Protected

Academic year: 2022

Share "Dielectric Relaxation Studies of Ternary Mixtures of Non-Rigid Polar Liquids in the MW Region"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

U P A

an international journal

Dielectric relaxation studies of ternary mixtures of non-rigid polar liquids in the MW region

G D R e w a r a n d |D B h a ln a g a r ”'

Microwave Laboratory, Department m Physics, University of Rajasthan, Jaipur-302 004, l|ajasthan, India

E-tnail dbhatnagar-2lK)0@>rcdiffmail.coiTi Received 30 May 2000, Accepted 23 May 2001

Abstract . The dielectric behaviour of three Acrylates and their mixture compositions as liquid dielectric samples, have been studied at MW

♦rcqucncy 9.132 GHz in dilute solution of carbon tetrachloride in the temperature range 300K to 330K Different dielectric parameters like dielectric viMistant r ' and dielectric loss e" at microwave frequency, static dielectric constant Cj and dielectric constant at optical trcquency have been determined. Using these dielectric data, various relaxation times viz T(>, Tj and r2, of individual components and their ternary mixture compositions h:uc been calculated. The relaxation time values for single component solutions agree well with literature values while relaxation iimc.s ot ternar>

mixture compositions are consistent with the computed values obtained from various theroretical relations Keywords : Dielectric constant, dielectric loss, dipole moment and relaxation time

PACS Nos. 77 22 Gm, 77.84 Nh

1. Introduction

T h o u g h m a n y w o r k e r s [1 - 4 J h a v e d o n e e x t e n s i v e w o r k o n

dielectric

b e h a v i o u r o f d il u te s o l u ti o n s o f p o la r li q u id s a n d th e ir binary m i x tu r e s in n o n - p o l a r s o l v e n ts , r e p o r t e d w o r k o n h ig h e r

order

s y s te m s is n e g l i g i b l y s m a ll . V e ry little in f o r m a t io n o n th e study o f n o n - r ig id p o l a r m i x t u r e s in s o l u ti o n s is a v a il a b le e v e n

at a

s in g le t e m p e r a tu r e . T h e d ie le c tr ic r e la x a tio n s tu d ie s o f te r n a ry iTiixiures o f p o l a r li q u id s in d i l u t e s o l u ti o n s o f n o n - p o l a r liq u id p ro v id e v a l u a b l e i n f o r m a t i o n a b o u t s o l u te - s o lu t e a n d s o lu te - so lv en t i n t e r a c t io n s . In o r d e r to p r o v i d e e x p e r i m e n t a l d a t a o n tern ary m i x t u r e c o m p o s i t i o n a n d to t e s t e x i s t i n g t h e o r e ti c a l fe la tio n s, t h r e e A c r y l a t e s n a m e l y B u ty l a c r y l a te ( B A ) , B u ty l m e th a c ry la te ( B M A ) , I s o - b u t y l m e t h a c r y l a t e ( I B M A ) a n d th e i r m ixture c o m p o s it io n s a t f o u r d if f e r e n t te m p e r a t u r e s a r e s tu d ie d . The s tu d y is e x p e c t e d to p r o v i d e b e t t e r u n d e r s ta n d in g o f th e nature o f m o l e c u l a r o r i e n t a t i o n p r o c e s s e s . M o l e c u le s o f s o lu te s under in v e s ti g a ti o n a r e n o n - r i g i d a n d a s s o c ia ti v e in n a tu r e . T h e dipole m o m e n t v a lu e s o f th e s e a c r y l a te s a r e a p p r o x im a te ly s a m e

^ i -9 7 -2 .1 0 D ) ; th e r e f o r e , it c a n b e a s s u m e d th a t th e in te r n a l fie ld s th e m i x tu r e s w i l l n o t b e d i f f e r e n t f r o m in t e r n a l f ie ld s o f th e

Author for conespoiLdcnce.

p u r e c o m p o n e n t s o f th e m i x tu r e . M o r e o v e r , it is e x p e c te d th a t r e la x a tio n b e h a v io r o f m i x tu r e m u s t d e p e n d o n t h e c o n c e n tra tio n o f in d iv id u a l c o m p o n e n t a n d te m p e r a t u r e o f th e m ix tu r e ,

2. Experimental details and theory

T h e e x p e r i m e n t a l s e t- u p , p r o c e d u r e a n d p r in c ip le in v o lv e d in d e te r m i n in g d ie l e c tr ic c o n s t a n t

c'

a n d d ie l e c tr ic lo s s

c"

at m i c r o w a v e f r e q u e n c y 9 .1 3 2 G H z is th e s a m e a s d e s c r ib e d e a r lie r b y Y a d a v a n d G a n d h i |5 ,6 ) . IT ie

e'

a n d o f s a m p le a re o b ta in e d b y u s in g th e f o llo w in g s e t o f e q u a ti o n s :

A . ,

1 -

P

h

P a

(1 )

(2)

Here, A

q

, A^ ,an<i A^ are free space wavelength, cut-off wavelength and wavelength in the dielectric sample respectively.

a j is attenuation constant of the material measured in nepers per meter and is phase shift per unit length of the sample

©2001 lACS

(2)

5 4 2 G D R e w a r a n d D B h a tn a g a r m e a s u r e d in r a d i a n s p e r m e t e r a n d a r e e x p e r i m e n t a ll y m e a s u r e d b y f o l l o w i n g r e l a t i o n s :

2 .3 0 2 ,

a , = — lo g

2 ^ - y f X i 2

k

(3)

(4)

H e re , a n d a r e r e a d in g s o f p o w e r in d ic a tin g m e t e r w ith o u t a n d w ith li q u id s a m p l e o f le n g t h

L

in d i e l e c tr ic c e ll.

S ta t ic d i e l e c t r i c c o n s t a n t o f s a m p le s a r e m e a s u r e d w ith th e h e l p o f a T o s h n iw a l R L - 0 9 d ip o l e m e t e r , w h ic h is b a s e d o n h e te r o d y n e b e a t m e th o d . D ie le c tr ic c o n s t a n t o f s a m p le s a t o p tic a l f r e q u e n c y a r e m e a s u r e d w i t h A b b e ’s r e f r a c t o m e t c r b y s q u a r i n g th e r e f r a c t i v e i n d i c e s ( n ^ ) f o r s o d i u m D - li n c . T h e c o m p o u n d s u n d e r i n v e s t i g a t i o n a r e o f s t a n d a r d g r a d e a n d u s e d a s s u c h w i t h o u t f u r t h e r p u r i f i c a t i o n . A ll t h e s e m e a s u r e m e n ts a r e U k e n a t f o u r te m p e r a t u r e s 3 0 0 K , 3 1 0 K , 3 2 0 K a n d 3 3 0 K . T e m p e r a tu r e o f m i x t u r e s w a s k e p t c o n s t a n t w i t h i n ± 0 .5 K b y u s i n g a c o n s t a n t t e m p e r a t u r e w a t e r b a th . In c q . ( 1 ) , is th e o n ly e x p e r im e n ta lly m e a s u r a b l e q u a n tity s in c e f o r d ilu te s o lu tio n o f p o l a r l i q u i d s in n o n - p o l a r s o l v e n t s , 1] a s

^d

m e a s u r e d b y m e a n s o f p l u n g e r d i s p l a c e m e n t in s i d e th e l i q u id f ille d in th e d i e l e c t r i c c e ll. T h e p r e c i s io n o f m e a s u r e m e n t f o r A,y is ± 0 .0 0 1 c m . C o r r e s p o n d i n g to t h i s a c c u r a c y v a lu e , th e e r r o r in th e m e a s u r e m e n t o f

£'

is

e s t im a te d . F o r s i m p l if i c a ti o n , e r r o r s d u e to n o n - z e r o im p e d a n c e o f s h o r t c i r c u it p lu n g e r , c u r v a t u r e o f m i c a w in d o w s e p a r a ti n g E - p la n e b a n d f r o m d ie l e c tr ic c e ll a n d c la m p in g g a p s in w a v e - g u id e s e c t io n a r e ig n o r e d . T h e e r r o r s o f m e a s u r e m e n t a r e c a l c u la te d b y u s i n g c o n v e n ti o n a l m e t h o d o f e r r o r a n a ly s is {?]. T h is m e th o d s t a t e s t h a t i f a q u a n t i t y

Q

d e p e n d s o n s e v e r a l o b s e r v a b l e q u a n t i t i e s .r, y , s u c h t h a t

Q

is a k n o w n f u n c t io n o f v a r ia b le s ,

Q

y » ... ). th a n e r r o r ^ o f th e q u a n ti ty

Q

m a y b e o b ta i n e d f r o m :

(5)

H e r e , , ... a r e th e e r r o r s o f th e m e a s u r e d v a lu e s o f jc, y , ... T h is r e l a t i o n is v a l i d e v e n i f t h e p r e c i s i o n o f th e r e s p e c ti v e m e a s u r e m e n t s d i f f e r s [7 ]. T h e e q . ( 2 ) i n d i c a te s th e p r e s e n c e o f a n d

L

t e r m s in a d d i t i o n to A ^ in th e e x p r e s s io n o f T h e e r r o r in v o l v e d in m e a s u r e m e n t o f e " is a ls o c a lc u la te d b y u s i n g e q . ( 5 ) . C o n s i d e r i n g th e s e c a lc u la ti o n s , e r r o r s i n v o l v e d in t h e m e a s u r e m e n t o f e ' a n d a r e a p p r o x i m a t e ly ± 1 % a n d ±

5%

r e s p e c tiv e ly .

T h e v a l u e s o f d i s t r i b u t i o n p a r a m e t e r

a

, m o s t p r o b a b l e r e la x a tio n t i m e Tq, r e l a x a t i o n t i m e T) f o r m o l e c u la r r o t a ti o n a n d r e l a x a ti o n ti m e

X

2 f o r i n t r a m o l e c u l a r r o t a t i o n a r e d e t e r m i n e d e x p e r i m e n t a ll y b y u s i n g t h e w e ll* e $ ta b lis h e d m e t h o d o f H ig a s i

etal

[8 ]. T h e e x p r e s s io n s u s e d to c o m p u t e d is tr ib u tio n p a ra m e te r

a

a n d v a r i o u s r e l a x a t i o n ti m e s a r e :

a

= 1 --- t a n ” '

n

( £ , - e ^ ) e "

To

= 1 ( 5 3 5

T, =

a)

Ty

(0

(b)

(7)

(«)

(9)

H e r e ,

co

is a n g u l a r f r e q u e n c y o f e .m . w a v e . T h e s e p a ra m e te r s in v o l v e

e'

a n d

e"

q u a n t i t i e s in t h e i r e x p r e s s i o n s . D u e to erro rs in £ ' a n d th e c a l c u l a t e d e r r o r s in d i e l e c t r i c p a ra m e te r s a , T o , T , a n d T2 a r e ± 5 % , ± 6 % , ± 1 2 % a n d ± 5 % re s p e c tiv e ly

S ta tic d ie l e c tr ic c o n s t a n t d ie l e c tr ic c o n s t a n t £ „ a t optical f r e q u e n c y , d ie l e c tr ic c o n s t a n t

e '

a n d d ie l e c tr ic lo s s £ " a t m icro w a v e f r e q u e n c y , d i s t r i b u t i o n p a r a m e t e r a , th e m o s t p ro b a b le ti m e

T

q

,

r e l a x a ti o n ti m e s

T|

a n d

T

2 f o r p u r e c o m p o n e n t s

and

th e i r te r n a r y m i x tu r e c o m p o s it io n s a t f o u r d if f e r e n t te m p e ra tu re s a r c r e p o r te d in T a b le 1.

T h e m o s t p r o b a b l e ti m e Tq f o r m i x tu r e c o m p o s it io n s ha^

b e e n c o m p u t e d b y th r e e t h e o r e t i c a l m e t h o d s 1 9 -1 1 ]

viz.

S im p le m ix in g ru le ( S M ) :

(10)

»=i

R e c ip r o c a l m ix in g r u le ( R M ) :

/=! *'

f

(11)

Y a d a v a n d G a n d h i m e t h o d ( Y & G ) :

1=1 (12)

H e r e , ;r. = 1 , 2 , 3 a r e m o l e f r a c ti o n s o f in d iv id u a l c o m p o n e n ts in th e m i x tu r e c o m p o s it io n .

E x p e r i m e n t a l v a l u e s o f m o s t p r o b a b l e r e l a x a t i o n tim es m i x t u r e c o m p o s i t i o n s a r e c o m p a r e d w ith th eo retical c o m p u t e d v a lu e s b y u s i n g a b o v e m e n t i o n e d m e t h o d s a n d arc l i s t e d in T a b le 2 .

(3)

SI. No. Name of the sample Temp. a ^3 c** To

X

10'\ Ti X 10'', T2X 10",

300 K 0 377 2.51. 2.128 2 396 0 120 1 1.41 7.83 16 65

1 Butyl acrylate 310 K 0.365 2.49 2 102 2.384 0.119 10.77 7 41 15 66

(BA) 320 K 0 337 2.46 2.080 2.369 0.118 10.19 7.17 14 15

330 K 0.401 2.45 2 061 2.358 0.118 9.70 6 92 13 59

300 K 0.333 2.53 J 2 127 2.438 0.123 9 37 6.92 12.70

2 Iso Butyl Methacrylate 310 K 0 266 2.50 • 2.105 2.425 0.122 8 44 6 64 10.72

(IBM A) 320 K 0.263 2.47 ; 2.095 2.406 0.121 7 75 6.78 8.87

330 K 0 238 2.44 \ 2 079 2.384 0.120 7.14 6.84 7 45

300 K 0.337 2 58

+

1 2 129 2 487 0 126 8 95 6 16 13.56

3 Butyl M ethacrylate 310 K 0.322 2 55 1 2 108 2.474 0 125 7.95 5.95 10 60

(BMA) 320 K 0.271 2.52 ; 2 088 2.454 0.124 7 21 5.93 8 78

330 K 0 215 2 49 2.071 2.441 0 123 6 45 5.79 7 18

T, Mix. No. 1 300 K 0.344 2.56 2.128 2.464 0.124 9.32 6 44 13 49

4. (BA+IBMA+BMA) 310 K 0.296 2 53 2 114 2 455 0.122 8.22 6.20 10 90

(.0696+.3035+.6269)* 320 K 0.277 2.50 2.097 2.443 0 120 7.07 6.04 8 28

330 K 0.211 2 48 2.082 2.435 0 1 19 6 21 5 87 6 59

T Mix. No 2 300 K 0 333 2 52 2 127 2 430 0 122 9 49 7 01 12 86

5. (BA+IBMA+BMA) 310 K 0 332 2 49 2.121 2 419 0 121 8 38 6.86 10.23

(.3421+ 5963+ 0616)* 320 K 0 261 2 46 2 100 2 407 0 120 7 24 6 33 8 28

330 K 0 149 2 44 2.084 2.395 0 119 6 63 6 20 6 59

T. Mix. No 3 300 K 0 3.57 2.54 2 127 2.434 0.125 10.23 7.09 14 78

6 (BA+IBMA-^BMA) 310 K 0 334 2 52 2 120 2 430 0.124 9.38 6 97 12.65

(.3608+ 3144+.3247)* 320 K 0,318 2.49 2 103 2.413 . 0 122 8.69 6.85 11.00

330 K 0.259 2 47 2 087 2.400 0.1 19 8 23 6 62 10 25

T Mix. No. 4 300 K 0.362 2 53 2 128 2 425 0.121 10.36 7.10 15.13

7 (BA+IBMA+BMA) 310 K 0.309 2.50 2 116 2 410 0.119 9 66 7.07 13 18

(.69I0+ .0.622+ .2488)* 320 K 0.297 2.47 2 103 2 396 0 1 17 8 75 6 96 1 1.02

330 K 0.253 2 44 2 089 2.382 0 115 7.75 6 84 8.79

* Mole fraction of respective components in mixture composition.

3. Results and Discussion

T he d ie l e c t r i c p a r a m e t e r s ( £ , ,

e '

a n d £ " ) a n d r e l a x a ti o n ( Tq, ! , a n d

X^)

o f th r e e p u r e a c r y l a t e s a n d t h e i r te r n a r y m ix tu re c o m p o s i t i o n s a t d i f f e r e n t t e m p e r a t u r e s a r c g iv e n in Table 1. I t is c le a r f r o m T a b le 1 th a t v a r ia tio n o f d ie le c tr ic c o n s ta n t a n d d i e l e c t r i c l o s s v a l u e s o f in d i v i d u a l c o m p o n e n t s a n d th eir te r n a r y m i x t u r e c o m p o s i t i o n s h a s s a m e tr e n d a n d o r d e r o f c^hange w ith t e m p e r a t u r e w h i c h s u p p o r t s o u r e x p e c t a t i o n th a t in te rn a l f i e l d s o f t h e m i x t u r e s a r e n o t d i f f e r e n t f r o m th o s e o f p u r e c o m p o n e n t s . A c r y l a t e m o l e c u l e s u n d e r p r e s e n t i n v e s t i g a t i o n s a r c n o n - r i g i d a s s o c i a t i v e in n a t u r e s o t h e m o le c u la r i n t e r a c t i o n s a m o n g s o l u t e c o m p o n e n t s in m i x tu r e s c a n n o t b e r u l e d o u t e v e n i n d i l u t e s o l u t i o n o f c a r b o n - te tra c h lo rid e .

F in i te v a lu e o f d i s t r i b u t i o n p a r a m e t e r

a

( r e c o r d e d in T a b le 1) f o r p u r e c o m p o n e n t s a n d t h e i r te r n a r y m i x tu r e c o m p o s it io n s a t d i f f e r e n t te m p e r a t u r e s i n d i c a te s e x is te n c e o f m o r e th a n o n e r e la x a tio n p r o c e s s . D e g r e e o f d is tr i b u ti o n o f r e la x a tio n p r o c e s s e s o t h e r th a n m o l e c u l a r r e l a x a t i o n o f e a c h c o m p o n e n t is s a m e a s n o s i g n i f i c a n t d i f f e r e n c e in a ~ v a l u e s o f m o l e c u l e s a r e o b s e r v e d . I t is a l s o e v i d e n t f r o m T a b l e 1 t h a t v a l u e s o f d i s tr i b u ti o n p a r a m e t e r

a

f o r a ll s o l u te s a n d te r n a r y m i x tu r e s d e c r e a s e w ith in c r e a s e in te m p e r a tu r e , w h ic h s h o w s th a t a t h ig h e r te m p e r a tu r e m o l e c u la r r o ta tio n o f s o lu te m o le c u le s b e c o m e f a s te r a n d u n if o r m in th e s o l u ti o n .

T h e v a lu e s o f Tq,t, a n d

X

2 ( l is t e d in T a b le 1) f o r s o l u te s a n d t h e i r m i x t u r e s d e c r e a s e w ith i n c r e a s e in t e m p e r a t u r e . A t h i g h e r t e m p e r a t u r e , b e s i d e c h a n g e in m o l a r v o lu m e , r a t e o f lo s s

(4)

544

G D R e w a r a n d D B h a tn a g a r

Table 2. Comparison of expenmental and computed values of relaxation time using theoretical methods for ternary mixtuie of acrylates at differen tem peratures.'

SI. No Name of the Sample Temp

Exp.

10‘^,

Theoretical values of Tq

calculated by

Percentage deviations

Sm Rule Rm

Rule

Y & G Method

SM Rule

RM Rule

Y & G Method

T.Mix. No. 1 300 K 9.32 9.24 9.21 9.26 0.85 1.18 0.64

I. (BA + IBMA + BMA)* 310 K 7,07 8.40 8.35 8.42 -1 .9 2 -1.81 -4 .9 0

(.0696+ 3035+.6269) 320 K 7.72 7.58 7.52 7.62 1.81 2.59 1.30

3.30 K 6.21 6.89 6.81 6.95 -1 0 .9 5 -9 .6 6 -1 1 .9 0

TM ix. No. 2 300 K 9 49 10.04 9.94 10.09 -5 .8 0 -4 .7 4 -6 .3 2

2. (BA + IBMA + BMA)* 310 K 8.38 8.98 8.80 8.83 -7 .1 5 -5.01 -5 .3 6

(.3 4 2 I+ .5 9 6 3 + .0 6 I6 ) 320 K 7.24 8.55 8 40 8.63 -1 5 .3 0 -1 6 .0 2 -1 8 .7 8

330 K 6.63 8.03 7.83 8.14 -2 1 .1 0 -1 8 .0 9 -2 2 .7 0

T.Mix. No. 3 300 K 10.23 9.97 y 85 10 03 2.54 3.71 1.95

3. (BA IBMA + BMA)* 310 K 9.38 9.10 8 95 9.19 2.98 4.58 2.02

(.3608+.3144+.3247) 320 K 8.69 8.45 8.69 8.56 2.76 0.00 1.50

330 K 8.23 7.90 7.64 8 05 4.00 7.10 7.16

T.Mix. No. 4 300 K 10.36 10.69 10.52 10 74 -3 .1 8 -1 .5 4 -3 .6 6

4. (BA + IBMA + BMA)* 310 K 9.66 10 01 9.82 9.18 -1 0 .6 6 -1 .6 5 4.90

(.6910+.0622+ 2488) 320 K 8.75 9.31 9 06 9.40 6 40 3.54 7.40

330 K 7.75 8.87 8.53 9 00 14.45 10.06 16.12

Mole fraction of respective components in mixture composition.

o f e n e r g y d u e to l a r g e r n u m b e r o f c o l l i s i o n s d o m i n a t e s a n d h e n c e m o l e c u l e s r e o r i e n t w ith f a s t e r r a t e w h ile f i e ld c h a n g e s its d i r e c t i o n . F i g u r e s 1 a n d 2 p r e s e n t v a r i a t i o n o f L o g ( TqT ) v

/

s1 / T f o r th e th r e e a c r y l a t e s a n d t h e i r t e r n a r y m i x t u r e s r e s p e c ti v e ly . T h e s e p l o t s s h o w l i n e a r r e l a t i o n s h i p w i t h i n e x p e r i m e n t a l e r r o r , w h i c h i n d i c a t e s e x p o n e n t i a l d e c a y o f r e l a x a t i o n t i m e s w ith te m p e r a t u r e f o r th e d i e l e c t r i c r e l a x a t i o n p r o c e s s e s .

• PureBA

■ PurelBMA

^PureBMA

Figure 1, Plots of log,^ (Tq T) versus \/T for pure BA, 1BMA and BMA in dilute solution of carbon tetrachloride.

For all the solutes and their ternary mixtures, values of T 2

are significantly different from T

q

and r ,, beyond any

e x p e r i m e n t a l e r r o r s . T h i s r e s u l t c o n f i r m s th e p r e s e n c e o f b o il in t e r m o l e c u l a r a n d i n t r a m o l e c u l a r r e l a x a t i o n p r o c e s s e s . H ighci v a l u e s o f T2 i n d i c a t e t h a t c o n t r i b u t i o n o f i n t r a m o l e c u l a i r e l a x a t i o n is h i g h e r in c o m p a r i s o n to i n t e r m o l e c u l a r o r o v e ra l m o l e c u l a r r e l a x a t i o n . L i s t e d Tq v a l u e s in T a b le 1 f o r m ix iu u c o m p o s i t i o n s a t f o u r d i f f e r e n t t e m p e r a t u r e s li e b e tw e e n r , v a l u e s o f c o n s t i t u e n t c o m p o n e n t s . T h i s b e h a v i o r c a n h(

e x p l a i n e d in te r m s o f o v e r l a p p i n g o f t w o D e b y e r e g i o n s a n d c o n s i d e r i n g t h a t t h e d e g r e e o f o v e r l a p c h a n g e s w ith c h a n g e ir m o l a r c o n c e n t r a t i o n o f p o l a r c o m p o n e n t s o f th e m i x tu r e .

• T.Mix.No 1 a Tmix No i A TMIx.No -c X TMix.No ’4

1/TxlOOO

F ig u re 2. Plots o f log,^, ( Tq T) versus 1/T for ternary m ix iu ie

com positions o f BA, IBMA and BMA in dilute solution of carbon tetrachloride.

(5)

The experimental values of most probable relaxation time T q

of mixture com positions at four different temperatures arc compared with computed T q values obtained by using eqs. (10-

12 ) and are listed in Table 2. Experimental and computed values arc comparable to each other however small deviations may be attributed to experimental uncertainties. At higher temperatures, these deviations are quite large and hence solute-solute and solute-solvent interactions among molecules may dominate relaxation process. An additional term representing interaction among dissimilar m olecules of mixture needs to be included in . expression of m ost probable relaxation time to improve j theoretical basis for the interpretation of relaxation time of*

mixtures and a variety o f m ixture com positions at higher?

temperature range should be taken. j

Acknowledgment \

The authors are thankful to Dr. S. Singh and Dr. V. K. Saxena for their suggestions and to Dr. R. V. Singh for his help during experimentation. One of us (GDR) is thankful to the University Grants C om m ission, New D elhi, for awarding the teacher lesearch fellowship.

Rerercnces

111 M P Madan

C a n J P h ^ s .

65 1573 (IW)

[21 M P Madan J Mol l.u/ 33 20.3 (1987)

[3] S C Srivastav, M S Sinha and A Khore I n d ia n J P u r e A p p I P h \\\

23 .581 (1985)

|4) G L Shanna

&

J M Gandhi J M o l h q

44

17 (1989)

(5) J vS Yadav and J M Gandhi

I n d i a n J P u t e A p p l P h \ s

31 421 (1993)

16) J S Yadav and J M Gandhi

I n d ia n J P u r e a n d A p p l Phws

31 489 (1993)

[7] H J Fischbcck and K H Fischbcck Formula, Facts and Constants (Berlin Springer-Verlag) p 254 (1987)

[8J K Higasi, Y Koya and M Nakamura

H u ll C lie rn S o t

44 988 (1971)

[9] R A Jangul, J S Yadav, I) Bhatnagar and J M Gandhi

I n d ia n J P u t e a n d A p p l

7V/V.V fi 69 353 (1995)

[10] R A Jangid, I) Bhatnagar and J M Gnadhi

I n d i a n J P u i e a n d A p p l P h \ s

35 47 (1997)

1111 R A Jangid, J vS Yadav, I) Bhatnagar and J M Gandhi

I n d ia n J P u i e a n d A p p l P h y s

33 135 (1995)

References

Related documents

Dielectric constant and loss tangent values of the branded and unbranded fuel-oil/diesel samples are measured by using a dielectric probe with a vector network analyzer for the

The AC conductivity, dielectric constant and dielectric loss of the CoCl 2 -doped PANI nanocomposites showed higher values in compari- son to the values for pure PANI. The

As we see from table 2, for the PSF/PMMA blend of various compositions, reduced values of dielectric constant (ε r ) than pure polysulphone are obtained.. To our

The dielectric constant decreased gradually with increasing frequency in the experimental frequency region (figure 3 (a))... In figure 3(b), the dielectric loss, tan δ , increased

The dielectric properties such as dielectric constant (εε r ), loss tangent (tan δδ) and temperature variation of dielectric constant ( ττ εεr ) of the sintered ceramic compacts

3.1 Composition dependence of dielectric behaviour The room temperature values of the dielectric constant (ε′), dielectric loss tangent (tan δ) and complex dielectric constant

To measure the relative permittivity (dielectric constant) and dielectric loss, LCR meter can be used to measure the dielectric constant and dielectric loss. The

A bstract : The temperature dependence of dielectric constant e', dielectric loss f&#34; and d.c, conductivity a were investigated for n-hexadecanol, its mixture