• No results found

Structure of N N N-trimethyl-triazole-2,4,6-trione

N/A
N/A
Protected

Academic year: 2023

Share "Structure of N N N-trimethyl-triazole-2,4,6-trione"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

U P A

- an international journal

Structure of N^,N-trim ethyl-tr|azole-2,4,6-trione

Raja Dey and Asok Baneijee

Depanuienc of Biophysics, Bose Institute, Pl/12« C.l.T. Scheme Vll-M, Calcutta>700 054. India

Received 10 July 1998, accepted 9 December 1998

Abstract : The crystal structure of N,N,N-tnniethyl-triazole-2,4,6-tnone has been determined from intensity data collected using a CAD>4 diffractometer with CuKa radiation.

The crystals are monoclinic with a = 8.1371 ( 1) A, h * 13.3941 (2) A. c = 14.8269 (2) A.j3 = 100.89 (2)^, z s 8 and belongs to the space group P2l/a. The structure was determined by Dircci methods. Least-squares refinement led to R(Fq) b 0.06 and RJiF)» 0.2224. The molecules have interesting packing and stacking interactions.

Keywords : N,N,N-trijnethy]-triazole-trione, crystal structure, C5H9O3N3 PACS Nos. : 61.66.Hq, 61.50.Ah

L Introduction

In course of our study on the geometrical and electronic consequences of interactions of N- methyl (N-CH3) group with keto group in triazole compound, we have synthesised this compound by methylating (through methyl sulphate) the parent N,N,N-trimethyl-triazole derivative. The structure of the isolated compound N,N,N-trimethyl-tria2ole-2,4,6-trione is presented here.

2. Experimental

Transparent, colourless single crystals of the titled compound were obtained from a saturated aqueous solution of the aforesaid triazole derivative. The crystal belongs to the space group P2Va with a = 8.1317 (1)

A.

= 13.3941 (2)

A.

c = 14.8269 (2) k f i = 100.89 (2)“, V = 1586.84 (4) A ^ F.W. = 720, = 1.408 g cm-^ = 1.413 g cm'^ and z= 8.

The density was measured by flotation method.

The three-dimensional intensity data were collected using a CAD-4 diffractometer, with gnq>hite monochromated C uK a radiation, at Tokyo University, Japan. The data were

73A(4)-u © 1999 LACS

(2)

544 Raja Dey and Asok Banerjee

collected at room temperature (20 ± l^C) using the 2d scan technique to a maximum 0 value of 74.91°. O f the 3388 reflections which were collected 3270 were unique. The data corrected for absorption* Lorentz and polarisation effects.

3. Determination and refinement of the structure

A three dimensional structure of the crystal was revealed by Shelx-86 [1]. From this, the position of all the non-hydrogen atoms were determined and then least-squares refinement with isotropic temperature factors for all the non-hydrogen atoms led to an R value of 12.45%. Subsequently* anisotropic temperature factors were introduced for all the non- hydrogen atoms and after two cycles of least squares refinement the R value comes down to 7.08%. All the hydrogen atoms were located from a difference Fourier map and were included in the refinement but their isotropic temperature factors were fixed at 0.05 A^. The maximum value of shift/esd was 0.070 in the final cycle which includes hydrogen atoms.

The final R values were R = 0.06 and = 0.2224. The weighting scheme [2] employed in the final cycle had the form w = l / Ir ^ F ^ ) + (0.2579 * P)^ + 0.66 P ] where P = (Max (F ^ , 0) + 2 ♦ F^)/3. The crystallographic programs used were Shelx 86 [1], Shdx 93 [2], PARST 93 [3], ORTEP [4], PLUTO [5]. All the computations were carried out using a PC 486 in our laboratory. The final atomic positions are given in Table 1 and the anisotropic

Table 1. Atomic coordinates (x 10^) and equivalent isotropic displacement parameters (A^ X 1(P). U (eq) is defined as one third of the trace of the orthogonalized U ij tensor.

Jt y z a (eq)

N ( l ) 601 (2) 4023 (1) 5917(1) 48(1)

C (2) - 5 0 2 (2) 4484(1) 6375 (1) 49(1)

N (3) - 163 (2) 5471 (1) 6607(1) 49(1)

C (4) 1263 (2) 5963(1) 6490(1) 51(1)

N (S) 2329(2) 5431 (1) 6044(1) 53(1)

C (6) 2055 (2) 4453(2) 5760(1) 51(1)

C ( l ) 354(4) 2967 (2) 5685 (2) 72(1)

C (3 ) -1 3 6 9 (4) 6015(2) 7039 (2) 76(1)

C (5) 3894(4) 5904(3) 5923 (2) 89(1)

0 (2) -1 7 1 9 (2) 4063 (2) 6551 (2) 81(1)

0 ( 4 ) 1549 (2) 6813(1) 6749 (1) 79(1)

0 (6) 3035 (3) 4011(2) 5392 (1) 83(1)

N ( n -2331 (2) 928(2) 9303 (1) 59(1)

C (2-) - 1604(3) 1072 (2) 10204(2) 61(1)

N (3 0 49(2) 1380(1) 10358 (1) 61(1)

C (4-) 955 (3) 1536(2) % 7 4 (2 ) 60(1)

N (5 ') 117(2) 1345(2) 8797 (1) 58(1)

C (6-) - 1531 (3) 1064(2) 8575(1) 54(1)

C ( n -4 1 1 1 (4) 649 (3) 9090(2) 92(1)

(3)

Table 1. (Cant’d.).

X y Z l/(eq)

C (3 ') 838 (5) 1616(3) 11305(2) 95(1)

C (5 ') 1049 (4) 1442 (3| 8041 (2) 91(1)

0 ( 2 0 -2 3 4 7 (3) 918 (2) 10824(1) 92(1)

0 ( 4 ') 2400(2) 1805(2) 9833(2) 91(1)

0 ( 6 0 - 2228 (2) 927 (2) 7791 (1) 81(1)

HOD -6 9 8 ( 4 ) 2750(2) 5819 (2) 80

H (12) 1244 (4) 2583 O i 6041(2) 80

H (13) 354 (4) 2874 ( ^ 5043 (2) 80

H (31) -2 2 9 9 (4 ) 5587 (?) 7080(2) 80

H(32) -1 7 6 0 (4 ) 6591 (2) 6677 (2) 80

H (33) - 8 3 9 (4) 6222(2) 7644(2) 80

H ( 5 n 4510(4) 5454 (3) 5608 (2) 80

H (52) 4551 (4) 6066(3) 6513(2) 80

H (53) 3648 (4) 6504 (3) 5568 (2) 80

H (1 T ) -4 4 5 5 (4) 567 (3) 8439 (2) 80

H ( r2) -4 7 6 7 (4 ) 1165 (3) 9299(2) 80

H ( r 3 ) -4271 (4) 34(3) 9394 (2) 80

H (3 '1 ) 1976 (5) 1818(3) 11324(2) 80

H (3 '2 ) 819(5) 1035 (3) 11683(2) 80

H (3 '3 ) 236 (5) 2148 (3) 11530(2) 80

H ( 5 'l) 320(4) 1294(3) 7469(2) 80

H ( 5 7 ) 1972(4) 983 (3) 8136 (2) 80

H (5 '3 ) 1463 (4) 2112(3) 8027(2) 80

thermal parameters in Table 2. A list of observed and calculated structure factors may be obtained from the authors on request. Chemical diagram of the molecule is shown in Table 2. Anisotropic displacement parameters (A^ x 10^) the anisotropic displacement factor exponent takes the fonn - 2a? [tfi U\ \ •¥ lh ka ^ h* t/12].

C/11 U22 t/33 t/23 t/13 U12

N (l) 53 (D 42(1) 48(1) - 1 (1) 7(1) 1(1)

C (2) 46 (D 49(1) 53(1) 0 (1) 9(1) -4 (1 )

N(3) 46(1) 45(1) 55(1) - 1 (1) 9(1) 4(1)

C{4) 56 (D 44(1) 48(1) 4(1) - 1(1) -3(1)

N(5) 45(1) 59(1) 54(1) 10(1) 7(1) - 6 (1)

C (6) 50(1) 57(1) 48(1) 10(1) 11(1) 9(1)

C (D 92(2) 44(1) 77(1) - 8 (1) 6 (1) 0 (1)

C(3) 72(1) 71(2) 90(2) -9 (1 ) 28(1) 17(1)

C(5) 63(2) 107(2) 102(2) 18(2) 26(1) -24(1)

0 (2) 69(1) 79(1) 104(1) - 11(1) 37(1) -26(1)

(4)

546 Raja Dey and Asok Banerjee

Table 2. (Cant'd.).

U \ \ V22 u n U23 1/13 U\2

0(4)

0(6)

N(l') C (2 ) NOO

C (4 ') N (5 ')

C(6') C ( D C (3 ') C (5 ')

0 (2 ) 0(4') 0(6')

91 (1) 83(1) 53(1) 75(1) 72(1) 52(1) 53(1) 54(1) 60(1) 125 (3) 81(2) 117(2) 57(1) 77(1)

50(1) 87(1) 70(1) 59(1) 58(1) 56(1) 67(1) 58(1) 133 (3) 90 (2) 122 (2) 102 (2) 100(2)

114(2)

90(1) 89(1) 56(1) 53(1) 48(1) 70(1) 57(1) 51(1) 87 (2) 58(1) 79 (2) 65(1)

112(2)

50(1)

- 8(1) 6(1) - 4 ( 1 ) 3(1)

- 6(1) - 1 2(1) - 7 ( 1 ) - 4 ( 1 ) - 7 ( 2 ) - 14(1)

-21(2)

2(1) - 2 8 ( 1 ) - 10(1)

4(1) 44(1) 13(1) 17(1)

-1(1)

3(1 ) 16(1) 8(1) 2 0(1) - 1 4 ( 2 ) 41(1) 40(1)

3(1)

2(1)

- 1 5 ( 1 ) 26(1) - 10(1)

-1(1)

2(1) 0(1) - 5 ( 1 )

-1(1)

- 2 6 ( 2 ) - 7 ( 2 ) - 2 6 ( 2 ) - 1 6 ( 1 ) - 1 6 ( 1 ) - 1 3 ( 1 )

Figure I . The projection of PLUTO packing along with stacking of the crystal structure down the b-stxis is shown in Figure 2. A 3^d stereo ORTEP of titled compound is shown in

0

C H 3 ^ ^ / C H 3

N N

N CH3

Figure 1. Chemical diagram of the molecule.

Figure 3. It is apparent from the packing that the structure is basically stabilised by stacking interactions

4. Description and discussion

The titled compound is a member of the triazole group and it acts both as antimicrobial and antifungal [6] agent. The solved crystal structure of the compound reveals two planer molecules in the asymmetric unit with 60° angle between the molecular planes and the structure is stabilised by stacking interactions. The two molecular planes have been found to be stacked and are related to two odier molecules by inversion symmetry with the stacking intervals ranging between 3.4-S.6 A. The bond lengths and bond angles of the crystal structure are listed in Table 3. The torsion angles are listed in Table 4.

(5)

Figure 2. PLUTO Packing with stacking in the a-c plane

02- « •

figww S. A alBioo ORTBP with diaplaeeineiit ellipaoida al the 50% prebabihty

level.

(6)

548 R a ja D e y a n d A s o k B a n e r je e Table 3. Bond lengths (A) and angles [deg].

N ( l ) - C ( 6) 1.375 (3)

N ( 1) ~ C { 2) 1.370 (2)

N (1 )~ C (1 ) 1.461 (2)

C ( 2) - 0 (2) 1.21 0 (2)

C ( 2 ) - N ( 3 ) 1.382 (2)

N ( 3 ) - C ( 4 ) 1.373 (2)

N ( 3 ) - C ( 3 ) 1,464 (3)

C ( 4 ) ~ 0 ( 4 ) 1.2 1 0 (2)

C ( 4 ) - N ( 5 ) 1.383 (3)

N (5 )~ C (6 ) 1.380 (3)

N ( 5 ) - C ( 5 ) 1.464 (3)

C ( 6) - 0 (6) 1.204 (2)

N ( l ') - C ( 2 ') 1.368 (3)

N ( n - C ( 6') 1.374 (3)

N ( r ) - C ( D 1.471 (3)

C ( 2 0 - 0 ( 2 0 1,209 (3)

C ( 2 0 - N ( 3 0 1.384 (3)

N ( 3 ') - C ( 4 ') 1.377 (3)

N O O - C O O 1.465 (3)

C ( 4 ') - 0 ( 4 ') 1.209 (3)

C ( 4 ') - N ( 5 ') 1.374 (3)

NCSO-CCb') 1.372 (3)

NCSO-CISO 1.472 (3)

C ( 6 ') - 0 ( 6 0 1.208 (3)

C ( 6 ) - N ( I ) - C ( 2 ) 124.1 (2)

C ( 6 ) - N ( 1 ) - C ( I ) 116.8 (2)

C ( 2) - N ( l ) - C ( l ) 118.6(2)

0 ( 2 ) - C ( 2 ) - N ( l ) 122.5 (2)

0 ( 2 ) - C ( 2 ) - N ( 3 ) 121.7(2)

N ( l ) - C ( 2 ) - N ( 3 ) 115.8(2)

C ( 4 ) - N ( 3 ) - C ( 2 ) 124.2 (2)

C ( 4 ) - N ( 3 ) - C ( 3 ) 118.0(2)

C ( 2 ) - N ( 3 ) - C ( 3 ) 117.8(2)

0 ( 4 ) - C ( 4 ) - N ( 3 ) 121.8(2)

0 ( 4 ) - C ( 4 ) - N ( 5 ) 122.4(2)

N ( 3 ) - C ( 4 ) - N ( 5 ) 115.8(2)

C ( 4 ) - N ( 5 ) - C ( 6 ) 123.7(2)

C ( 4 ) - N ( 5 ) - C ( 5 ) 118.3(2)

C ( 6 ) - N ( 5 ) - C ( .4 ) 117.9(2)

0 ( 6 ) - C ( 6 ) - N ( l ) 122.4(2)

(7)

T a b le 3. { C o n t ' d )

0(6)^

N ( D -

C( 2) C O )

C (6 )

0 ( 2 ) 0 ( 2 ) N(l ' ) C( 2 ) C( 2)

C ( 4 ) 0 ( 4 ' )

0 ( 4 )

N { 5 ') C ( 4 ' ) C ( 4 ) C ( 6 ' )

0 ( 6 ) 0 ( 6 )

N ( D

C (6) -

C ( 6 ) ^ ' N ( D - N ( l ' ) - N ( n

- C ( 2 ) -C(2' ) - C ( 2 )

■ ' N ( 3 ' )

- N(?')

- N ( 3 ) - C ( 4 ' )

" C ( 4 ) - C ( 4 ' ) - N ( 5 ' ) - N (5 ')

■ N ( 5 ' ) - C ( 6 ' )

- C ( 6 ) C(6')

N ( 5 ) N ( 5 )

- C (6 ) C { \ )

” c ( n - N ( 1 ) - N ( 3 )

N( 3)

C ( 4 ) C ( 3 )

■“ C( 3)

- N ( 5 ' ) - N (3 ') - N (3 ') - C ( 6 ' ) - C ( 5 ) - C ( 5 )

~ N ( 1 ) - N ( 5 ' ) - N (5 ')

121 S(2)

116 1 (2)

124 S (2) 118 2(2)

117 3 ( 2 ) 122 1 (2)

122 4 (2) 115 5 ( 2 ) 124 2 ( 2 ) 117 3 (2) 118 4 ( 2 )

122 0(2) 122 5(2)

115 4 ( 2 ) 1 2 4 4 ( 2 )

118 O(2)

1 1 7 6 ( 2 )

122 0(2)

122 I (2) 115 8 ( 2 )

T a b le 4. T o rsio n a n g le s (d egre es) fright-han d rule, K ly n e Expcrientia, 16 521 (I9 6 0 )] \e s d fo llo w in g Stanford & W ascr.

A 28 213 (1972)1

and P rolog A( In Cf v.\i

A n g le <• A d

c 2 - N l - C 6 - 0 6 176 53 0 20

c l - N l - C 6 - N 5 - 175 46 0 19

c 2 - N l - C 6 - N 5 - 3 91 0 26

c 6 - N l - C 2 - 0 2 - 175 37 0 21

c 6 - N l - C 2 - N 3 6 08 0 24

c 1 -N l - C 2 - 0 2 - 3 96 0 29

c 1 N l - C 2 - N 3 177 50 0 18

c 1 -N l - C (> -o 6 4 97 0 31

N 1 - C 2 - N 3 - C 4 - 6 73 0 23

N l - C 2 - N 3 - C 3 175 79 0 17

o 2 - C 2 - N 3-C ' 3 - 2 77 0 28

o 2 - C 2 - N 3 - C 4 174.72 0 20

c 2 - N 3 - C 4 - N 5 5.07 0 25

c 2 - N 3 - C 4 - 0 4 - 175.87 0 18

c 3 - N 3 - C 4 - 0 4 1.61 0.28

c 3 - N 3 - C 4 - N 5 - 177 44 0 17

(8)

5 5 0 Raja Dey and Asok Banerjee T a b le4. {Cont'd.)

Angle e.s.d.

N 3-C' 4-N 5-C 6 - 2.59 0.26

N 4-N 5-C 5 - 178.14 0.19

0 4-C 4-N 5 C 5 281 0.29

O 4-C 4-N 5-C 6 178.36 0.19

( 4-N 5 C 6-N 1 2.04 0.27

c 4-N 5 C 6 - 0 6 - 178 39 0.20

c 5-N 5 C 6-N 1 177.61 0.19

c 5-N 5 C 6 - 0 6 - 2 8? 0.31

N r - c 2'-N 3 C 3 ' 175.49 0.24

o 2-C 2 - N 3 - C 4 ' 178.06 0.26

N 1 2 '-N 3 'C 4 ' - 0 32 0.35

N 3 - C 2'-N r - c r - 177 01 0.23

N 3 - C 2 - N I'-C 6' 0.31 0.35

O 2 '-C 2-N 1 -C I ' 4.61 0 39

O 2 -C 2'-N r - c 6 - 178 07 0 25

0 2~C 2 '-N 3 -C y ‘ 6.13 0.39

c 2 '-N r - c 6-N 5' 1.29 0.34

c 2 - N r c ' 6 0 6' - 180.00 024

c r - N r - c 6 0 6' -2.66 0.35

c r - N r - c 6-N 5' 178.63 0.22

N I'-C 6-N 5 0 A' - 3 11 0.34

N r - c 6-N 5 0 5' 176..52 0.22

o 6' C 6-N 5 0 5' -2 .1 9 0.35

o 6' C 6-N 5 0 A' 178.17 0 24

c 6'-N 5 - C 4 - N y 3.10 0.35

c 6~N 5 - C 4 0 A - 178.21 0.25

c 5 - N 5 '-C 4 0 A' 2.15 0.40

c 5'-N 5 - C 4 '-N y - 176.54 0.23

N 5 C 4 '-N 3 0 r -1 .2 7 0.35

N 5 - C 4 - N 3 0 y - 177.04 0.24

0 4 '-C 4 - N 3 0 r - 179 95 0.26

o 4 '-C 4 '-N 3 0 y 4.28 0.40

Acknowledgment

Thanks are due to Prof. P Roychoudhury, Physics Department, Calcutta University for fruitful discussion. Thanks are also due to the Council of Scientific & Industrial Research, Govt, of India for financial support.

(9)

References

111 G M Shcldrick SHEl.XS-86. pKfffram fot Crystal Structure Salutton (University of Gottingen, Germany) (1990)

(21 G M Sheldnck SHELXS 93, Program for Crystal Structure Determination (University of Cambridge, England) (1993)

(3J M Nardclli J. Comput, Chem. 195 (1983)

(41 C K Johnson OHTEPII. Report ORNL-513H. (Oak Ridge Mational Laboratory, Tennessee, USA) ( 1976) [5] W D S Motherwell PLUTO. Prof*ram fo r Plottirifi Motecular and Crystal Structuies (University of

Cambridge, England) (1992)

[6] L S Goodman and A Gilman The Pharnuicolof*ical Basis (If Therapeutics 8-th edn Vol. II p 1239 (1991)

73A(4)-15

References

Related documents

The necessary set of data includes a panel of country-level exports from Sub-Saharan African countries to the United States; a set of macroeconomic variables that would

Percentage of countries with DRR integrated in climate change adaptation frameworks, mechanisms and processes Disaster risk reduction is an integral objective of

The Congo has ratified CITES and other international conventions relevant to shark conservation and management, notably the Convention on the Conservation of Migratory

INDEPENDENT MONITORING BOARD | RECOMMENDED ACTION.. Rationale: Repeatedly, in field surveys, from front-line polio workers, and in meeting after meeting, it has become clear that

The scan line algorithm which is based on the platform of calculating the coordinate of the line in the image and then finding the non background pixels in those lines and

Daystar Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21.. Re-use and distribution is strictly not permitted, except for Open

Madhucon Projects Limited in C.P (IB) No. II of Compilation filed by Amicus Curiae) The Hon'ble Adjudicating Authority was of the view that remuneration quoted by

sional Fourier synthesis was calculated using observed structure amplitudes to which phases were assigned from four bromine atoms.. The computation for